学案3 三角函数的图象(教育精品)

上传人:痛*** 文档编号:253105769 上传时间:2024-11-28 格式:PPT 页数:33 大小:1.29MB
返回 下载 相关 举报
学案3 三角函数的图象(教育精品)_第1页
第1页 / 共33页
学案3 三角函数的图象(教育精品)_第2页
第2页 / 共33页
学案3 三角函数的图象(教育精品)_第3页
第3页 / 共33页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,学案,3,三角函数的图象,名师伴你行,SANPINBOOK,名师伴你行,SANPINBOOK,考点,1,考点,2,考点,3,填填知学情,课内考点突破,规 律 探 究,考 纲 解 读,考 向 预 测,返回目录,名师伴你行,SANPINBOOK,考 纲 解 读,三角函数的图象,(1)能画出y=sinx,y=cosx,y=tanx的图象.,(2)了解函数y=Asin(x+)的物理意义;能画出函数y=Asin(x+)的图象,了解参数A,对函数图象变化的影响.,返回目录,名师伴你行,SANPINBOOK,三角函数的图象是三角函数概念和性质的直观形象的反映,高考对这部分内容的考查主要是三角函数的图象的变换和解析式的确定以及通过图象的描绘、观察,讨论函数的有关性质,题型设计以选择题、解答题的形式出现,属低难度的题.,考 向 预 测,返回目录,1.,“,五点法”作,y=,Asin(x+)(A,0,0),的简图,五点的取法是:设,X=,x+,,由,X,取,来求相应的,x,值,及对应的,y,值,再描点作图,.,2.,变换作图法作,y=,Asin(x+,),(,A,0,0,)的,图象,(1),振幅变换:,y=,sinxy,=,Asinx,名师伴你行,SANPINBOOK,返回目录,将,y=,sinx,的图象上各点的纵坐标变为原来的,倍,(,横坐标不变,).,(2),相位变换:,y=,Asinxy,=,Asin(x+,),将,y=,Asinx,的图象上所有点向左(,0,)或向右,(,0),平移,个单位,.,(3),周期变换,:y=,Asin(x+)y,=,Asin(x+,),将,y=,Asin(x+,),图象上各点的横坐标变为原来的,倍(纵坐标不变),.,(4),由,y=,sinx,的图象变换到,y=,Asin(x+,),的图象,.,一般先作,变换,后作,变换,即,A,|,相位,周期,名师伴你行,SANPINBOOK,返回目录,y=,sinxy,=,sin(x+)y,=,sin(x+)y,=,Asin(x+,).,如果先作,变换,后作,变换,则左右平移时不是,|,个单位,而是 个单位,即,y=,sinxy,=sin,(,x+,)是左右平移 个单位长度,.,3.,y=,Asin(x+)(A,0,0),x,0,+),在物理中的应用,A,为,,,T=,为,,,f=,为,,,x+,为,,,为,.,周期,相位,振幅,周期,频率,相 位,初 相,名师伴你行,SANPINBOOK,4.,图象的对称性,函数,y=,Asin(x+)(A,0,0),的图象具有轴对称和中心对称的性质,.,具体如下:,(,1,)函数,y=,Asin(x+,),的图象关于直线,成轴对称图形,.,(,2,)函数,y=,Asin(x+,),的图象关于点,成中心对称图形,.,返回目录,(其中,x,j,+,=,k,kZ,),x=,x,k,(,其中,x,k,+,=,k,+ ,kZ,),(x,j,0),名师伴你行,SANPINBOOK,返回目录,考点,1,三角函数的图象,名师伴你行,SANPINBOOK,2010年高考山东卷已知函数f(x)=,sin2xsin+,cos,2,xcos-,sin,(,+,),(0),其图象过点,.,(1)求的值;,(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在,上的最大值和最小值.,【分析】,(1)化一角一函后代入点,求的值.,(2)利用图象变换求出函数g(x)的表达式.,返回目录,名师伴你行,SANPINBOOK,【,解析,】,(1)f(x)= sin2xsin+,cos,-,cos,= (sin2xsin+cos2xcos),= cos(2x-).,又,f(x,),过点, =,cos,( -,),cos,( -)=1.,由,0,知,= .,返回目录,名师伴你行,SANPINBOOK,(2)由(1)知f(x)=,cos,(,2x-,),.,将f(x)图象上所有点的横坐标缩短到原来的,纵坐标不变,变为g(x)=,cos,(,4x-,),.,0x,-,4x-,.,当4x-,=0,即x=,时,g(x)有最大值,;,当4x-,=,即x=,时,g(x)有最小值-,.,返回目录,本题考查三角函数的恒等变换、已知三角函数值求角、三角函数的伸缩变换及三角函数的性质等知识,考查三角恒等变换能力、推理运算能力及利用所学知识综合分析、解决问题的能力,.,名师伴你行,SANPINBOOK,返回目录,已知,f(x,)=2sin,2,x+2sinxcosx,xR.(1),求函数,f(x,),的最小正周期和最大值,;(2,)在给出的直角坐标系中,画出函数,y=,f(x,),在区间,- ,上的图象,.,名师伴你行,SANPINBOOK,【,解析,】,(1),f(x,)=2sin,2,x+2sinxcosx,=1-cos2x+sin2x,=1+ ( sin2xcos -cos2xsin ),=1+ sin(2x- ).,所以函数,f(x,),的最小正周期为,,,最大值为,1+ .,(2),由(,1,)知,x,y,2,1,1-,1,1+,2,返回目录,名师伴你行,SANPINBOOK,返回目录,故函数,y=,f(x,),在区间, ,上的图像如下:,名师伴你行,SANPINBOOK,返回目录,【,分析,】,首先确定,A.,若以,N,为五点法作图中的第一个零点,由于此时曲线是先下降后上升,(,类似于,y=-,sinx,的图象,),所以,A0.,而,= ,可由相位来确定,.,名师伴你行,SANPINBOOK,【,解析,】,解法一,:,以,N,为第一个零点,则,A=- ,T=( )=,=2,此时解析式为,y=- sin(2x+).,点,N(- ,0),- 2+=0,= ,所求解析式为,y=- sin(2x+ ). ,返回目录,名师伴你行,SANPINBOOK,解法二,:,由图象知,A= ,以,M( ,0),为第一个零点,P( ,0),为第二个零点,., +=0 =2, +=, =- .,所求解析式为,y= sin(2x- ). ,返回目录,解之得,列方程组,名师伴你行,SANPINBOOK,(1),与是一致的,由可得,事实上,y=- sin(2x+ )=- sin(2x+- ),= sin(2x- ),同样由也可得,.,(2),由此题两种解法可见,在由图象求解析式时,“第一个零点”的确定是重要的,应尽量使,A,取正值,.,(3),已知函数图象求函数,y=,Asin(x+)(A,0,0),的解析式时,常用的解题方法是待定系数法,由图中的最大值或最小值确定,A,由周期确定,由适合解析式的点的坐标来确定,但由,返回目录,名师伴你行,SANPINBOOK,返回目录,图象求得的,y=,Asin(x+)(A,0,0),的解析式一般不唯一,只有限定,的取值范围,才能得出唯一解,否则,的值不确定,解析式也就不唯一,.,(4),将若干个点代入函数式,可以求得相关待定系数,A,这里需要注意的是,要认清选择的点属于“五点”中的哪一个位置点,并能正确代入式中,.,依据五点列表法原理,点的序号与式子的关系是,:“,第一点”(即图象上升时与,x,轴的交点)为,x+,=0,;“第二点”(即图象曲线的最高点)为,x+,=,;“第三点”(即图象下降时与,x,轴的交点)为,x+,=;“,第四点”(即图象曲线的最低点)为,x+,= ;“,第五点”为,x+,=2.,名师伴你行,SANPINBOOK,返回目录,如图所示,它是函数,y=,Asin(x+)(A,0,0),|,的图象,由图中条件,写出该函数的解析式,.,名师伴你行,SANPINBOOK,由图知,A=5,,由 得,T=3,= .,此时,y=5sin(,x+,).,下面介绍怎样求初相,.,解法一,:(单调性法),点,(,0),在递减的那段曲线上,,+2k+ ,2k+ (,kZ,).,由,sin( +)=0,得,+=2k+(kZ),=2k+ (,kZ,).,|,= .,返回目录,名师伴你行,SANPINBOOK,返回目录,解法二,:(最值点法),将最高点坐标,( ,5),代入,y=5sin(,x+,),,得,5sin( +)=5, +=2k+ (,kZ,),=2k+ (,kZ,).,又,|0)和g(x)=2cos(2x+)+1的图象的对称轴完全相同.若x,则f(x)的取值范围是,.,【,分析,】,利用两图象对称轴完全相同得出两函数周期相同,则可求出.,考点,3,三角函数图象的对称性,【,解析,】,由对称轴完全相同知两函数周期相同,=2,f(x)=3sin(2x- ).,名师伴你行,SANPINBOOK,返回目录,名师伴你行,SANPINBOOK,由x,得-,2x-,-,f(x)3.,故填,.,本题关键是求出,再利用x的取值范围求出f(x)的取值范围.,返回目录,名师伴你行,SANPINBOOK,返回目录,将函数,y=sin2x,的图象向右平移,(,0),个单位,得到的图象恰好关于,x=,对称,则,的最小值为,.,y=sin2x,的图象向右平移,个单位得到,y=sin2(x-),的图象,又关于,x=,对称,则,2( -)=,k,+ (,kZ,),2=-,k,- ,取,k=-1,得,= .,名师伴你行,SANPINBOOK,返回目录,1.,由函数,y=,sinx(xR,),的图象经过变换得到函数,y=,Asin(x+,),的图象,在具体问题中,可先平移变换后 伸缩变换,也可以先伸缩变换后平移变换,但要注意,:,先伸缩,后平移时要把,x,前面的系数提取出来,.,2.(1),五点法作函数图象及函数图象变换问题,当明确了函数图象基本特征后,“,描点法”是作函数图象的快捷方式,.,运用“五点法”作正、余弦型函数图象时,应取好五个特殊点,并注意曲线的凹凸方向,.,名师伴你行,SANPINBOOK,返回目录,在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母,x,而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少,.,(2),由图象确定函数解析式,由函数,y=,Asin(x+,),的图象确定,A,的题型,常常以“五点法”中的第一零点,( ,0),作为突破口,要从图象的升降情况找准第一零点的位置,.,要善于抓住特殊量和特殊点,.,名师伴你行,SANPINBOOK,返回目录,(3),对称问题,函数,y=,Asin(x+,),的图象与,x,轴的每一个交点均为其对称中心,经过该图象上坐标为,(,x,A,),的点与,x,轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期,(,或两个相邻平衡点间的距离,).,名师伴你行,SANPINBOOK,祝同学们学习上天天有进步!,名师伴你行,SANPINBOOK,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!