资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,妈妈,智慧堡是不是快到了?,因为我已经会证明定理了呀!,为什么你这样认为呢?,你会了吗?,不就是分三步走吗?,可你知道第三步怎么“走”吗?,条件,结论,6.5 三角形内角和定理的证明,看看这个课题吧!,三角形内角和定理:,三角形三个内角的和等于180,已知:如图,ABC.,求证:,+180,证明:,A,B,C,1,2,D,E,请你先走出“前两步”,你会验证这个定理吗?,你会把验证的方法用尺规作图作出来吗?,你会证明了吗?,A,B,C,1,2,D,E,1,(两直线平行,内错角相等),2,(两直线平行,同位角相等),1+2+180,(一平角180),+180,(等量代换),证明:作BC的延长线CD,过点C作射线CE/AB,则,辅助线(虚线),需要作辅助线时先作辅助线,所做的辅助线当已知条件看待;辅助线的作用主要是移动图形,使条件和结论产生联系.,议一议:,在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ,/BC,(如图)。,他的想法可行吗?,A,B,C,Q,P,你有没有其他的证法?,A,B,C,E,图1,E,A,B,C,D,F,图2,A,N,B,C,T,S,图3,P,Q,R,M,A,N,B,C,T,S,图4,P,Q,R,M,添加辅助线思路:1、构造平角,2、构造同旁内角,随堂练习,P208,可以通过实验(包括尺规作图)来寻找证明的思路,没有条件时就创造条件(作辅助线),你今天的收获是什么呢?,条件,结论,三角形内角和定理可以用来进行角的代换,也是一种等量关系,思考题:,已知:如图,AMN+MNF+NFC=360,,求证:ABCD(用多种方法证明),D,F,N,M,B,A,C,作业:习题6.6,
展开阅读全文