初三数学一元二次方程典型应用题

上传人:wuli****0220 文档编号:252958721 上传时间:2024-11-26 格式:PPT 页数:23 大小:635.50KB
返回 下载 相关 举报
初三数学一元二次方程典型应用题_第1页
第1页 / 共23页
初三数学一元二次方程典型应用题_第2页
第2页 / 共23页
初三数学一元二次方程典型应用题_第3页
第3页 / 共23页
点击查看更多>>
资源描述
*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,一元二次方程典型应用,二、目标分析,知识与技能,:,能根据问题中的数量关系,列出一元二次方程。提高数学建模能力,观察归纳能力,问题意识能力。,过程与方法,:,经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。,情感、态度与价值观,:,通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。体会做数学的快乐,培养用数学的意识,。,重难点分析,重点,:,列一元二次方程解实际问题,难点:,发现问题中的等量关系,复习问题,提出新知,1.列方程解应用题的基本步骤怎样?,(1)审题:透彻理解题意,明确哪些是已知数,哪些是未知数,以及它们之间的关系。,(2)设未知数:根据题意,可直接设未知数,也可间接设未知数,未知数必须写明单位,语言叙述要完整。,(3)列代数式和方程:根据题中给出的条件,用含有所设未知数的代数式表示其他未知数,利用等量关系,列出方程或方程组,一般列方程的个数与所设未知数的个数相同。,(4)解方程或方程组应注意解题技巧,准确地求出方程或方程组的解。,(5)检验答案:解应用题要检验有无增根,又要检验是否符合题意,最后做出符合题目要求的答案。.,注:(1)在这些步骤中,审题是解题的基础,列方程是解题的关键。,(2)在列方程时,要注意列出的方程必须满足以下三个条件:a,方程两边表示同类量 b,方程两边的同类量的单位一样 c,方程两边的数值相等,2.解一元二次方程有哪些方法?,直接开平方法,配方法,公式法,因式分解法,3.一元二次方程常见应用题有哪些类型?,(1)增长率问题 (2)商品定价,(3)储蓄问题 (4)趣味问题,(5)古诗问题(年龄问题)(6)情景对话,(7)等积变形 (8)动态几何问题,增长率问题,例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.,考点:,一元二次方程的应用,专题:,增长率问题,分析:,本题设这两个月的平均增长率是x,十月份的销售额为200(1-20%)万元,十一月份的销售额为200(1-20%)(1+x)万元,十二月份在十一月份的基础上增加x,变为200(1-20%)(1+x)(1+x)即200(1-20%)(1+x)2万元,进而可列出方程,求出答案,解答:,解:设这两个月的平均增长率是x,十一月份的销售额达到200(1-20%)+200(1-20%)x=200(1-20%)(1+x),十二月份的销售额达到200(1-20%)(1+x)+200(1-20%)(1+x)x=200(1-20%)(1+x)(1+x)=200(1-20%)(1+x)2,200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,所以1+x=1.1,所以x=-11.1,即x1=0.1,x2=-2.1(舍去)答:这两个月的平均增长率是10%,点评:,此类题目旨在考查增长率,要注意增长的基础,另外还要注意解的合理性,从而确定取舍,商品定价,例2某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?,考点:,一元二次方程的应用,专题:定价,问题,分析:,设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,所以此时商场平均每天要盈利(40-x)(20+2x)元,根据商场平均每天要盈利=1200元,为等量关系列出方程求解即可,解:设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,由题意,得(40-x)(20+2x)=1200,即:(x-10)(x-20)=0,解,得x1=10,x2=20,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元,点评:,本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系列出方程求解,储蓄问题,例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税),解 设第一次存款时的年利率为x.则根据题意,得1000(1+x)500(1+0.9x)530.,整理,得90 x2+145x30.,解这个方程,得x10.02042.04%,x21.63.,由于存款利率不能为负数,所以将x21.63舍去.,答 第一次存款的年利率约是2.04%.,趣味问题,例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?,解:设,竹竿,的长度为X,那么X=(X-4)+(X-2)=X-8X+16+X-4X+4=2X-12X+20,平移过来,X-12X+20=0,(X-10)x(X-2)=0,X取10或2,由于2不符合标准,故舍去,得X=10米,答:竹竿长10米。,古诗问题(年龄问题),例5读诗词解题:(通过列方程式,算出周瑜去世时的年龄).,大江东去浪淘尽,千古风流数人物;,而立之年督东吴,早逝英年两位数;,十位恰小个位三,个位平方与寿符;,哪位学子算得快,多少年华属周瑜?,解:设十位是X,则个位数是(X+3)两位数就表示成10X+(X+3)=11X+3,所以用“各位平方与寿符”做等量,列方程 11X+3=(X+3)2 X2-5X+6=0,(X-2)(X-3)=0,X1=2或X2=3,X1+3=5 X2+3=6,可得两组解,25或36,因为已知“而立之年督东吴”(而立之年为30岁),所以一定比30大.,25就要舍去。,可得周瑜去世的年龄为36岁。,情景对话,例6春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.,某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?,图1,如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.,如果人数不超过25人,人均旅游费用为1000元.,考点:,一元二次方程的应用,分析:,设该单位这次共有x名员工去天水湾风景区旅游依题意列方程求解,解答:,解:设该单位这次共有x名员工去天水湾风景区旅游因为100025=2500027000,所以员工人数一定超过25人可得方程1000-20(x-25)x=27000整理得x2-75x+1350=0,解得x1=45,x2=30当x1=45时,1000-20(x-25)=600700,故舍去x1;当x2=30时,1000-20(x-25)=900700,符合题意答:该单位这次共有30名员工去天水湾风景区旅游,点评:,本题考查的是一元二次方程的应用,难度不大,等积变形,例7将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m),(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.,(2)设计方案2(如图3)花园中每个角的扇形都相同.,以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.,图3,图2,考点:,一元二次方程的应用,专题:,应用题,分析:,(1)设出小路的宽度为x米,表示出两条小路的面积,而小路的面积为原来荒地面积的三分之一,列出方程解答即可;(2)设出扇形的半径为y米,则四个扇形的面积和恰好等于一个圆的面积,而四个扇形的面积和为原来荒地面积的三分之一,列出方程解答即可,解答:,解:(1)设小路的宽度为x米,根据题意列方程得,18x+15x-x2=181513,解得x1=3,x2=30(不合题意,舍去);答:图中小路的宽为3米(2)设扇形的半径为y米,根据题意列方程得,y2=181513,解得y15.4,y2-5.4(不合题意,舍去);答:扇形的半径约为5.4米,点评:,此题主要考查长方形和扇形面积的计算方法,解答时注意题目中蕴含的数量关系,动态几何问题,例8如图4所示,在,ABC,中,C90,,AC,6cm,,BC,8cm,点,P,从点,A,出发沿边,AC,向点,C,以1cm/s的速度移动,点,Q,从,C,点出发沿,CB,边向点,B,以2cm/s的速度移动.,(1)如果,P,、,Q,同时出发,几秒钟后,可使,PCQ,的面积为8平方厘米?,(2)点,P,、,Q,在移动过程中,是否存在某一时刻,使得,PCQ,的面积等于,ABC,的面积的一半.若存在,求出运动的时间;若不存在,说明理由.,图4,考点:,一元二次方程的应用,专题:,几何动点问题,分析:,(1)设果P、Q同时出发,x秒钟后,AP=xcm,PC=(6-x)cm,CQ=2xcm,此时PCQ的面积为:122x(6-x),令该式=8,由此等量关系列出方程求出符合题意的值;(2)ABC的面积的一半等于 12 12ACBC=12cm2,令 122x(6-x)=12,判断该方程是否有解,若有解则存在,否则不存在,解答:,解:(1)设xs后,可使PCQ的面积为8cm2由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm,则12(6-x)2x=8整理,得x2-6x+8=0,解得x1=2,x2=4所以P、Q同时出发,2s或4s后可使PCQ的面积为8cm2(2)由题意得:SABC=12ACBC=1268=24,即:122x(6-x)=1224,x2-6x+12=0,=62-412=-120,该方程无解,所以,不存在使得PCQ的面积等于ABC的面积的一半的时刻,点评:,本题主要考查一元二次方程的应用,关键在于找出等量关系列出方程求解,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!