游戏要好玩需发展良好的AI

上传人:fhgo****421 文档编号:252957074 上传时间:2024-11-26 格式:PPTX 页数:30 大小:1.59MB
返回 下载 相关 举报
游戏要好玩需发展良好的AI_第1页
第1页 / 共30页
游戏要好玩需发展良好的AI_第2页
第2页 / 共30页
游戏要好玩需发展良好的AI_第3页
第3页 / 共30页
点击查看更多>>
资源描述
,*,Intelligent Database Systems Lab,按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,N.Y.U.S.T.,I.M.,按一下以編輯母片標題樣式,按一下以編輯母片,第二層,第三層,第四層,第五層,*,Intelligent Database Systems Lab,EvolvingReactiveNPCs fortheReal-Time SimulationGame,Advisor,:,Dr.Hsu,Reporter,:,Wen-Hsiang Hu,Author,:,JinHyuk Hong and Sung-Bae Cho,IEEE SymposiumonComputational IntelligenceandGames,1,Outline,Motivation,Objective,Introduction,Thegame:Build&Build,Basicbehaviormodel,Co-evolutionarybehaviorgeneration,Experiment andResults,Discussion,Conclusion,PersonalOpinion,2,Motivation,AIincomputergameshasbeenhighlightedinrecent,but,manualworks,fordesigning theAI,cost agreatdeal,.,3,Objective,DesigningNPCsbehaviors withoutrelyingonhumanexpertise.,4,Basicbehaviormodel,Twodifferent gridscales areused fortheinputof,theneural networksuchas55and 1111.,five neuralnetworks,areusedtodecidewhethertheassociating,action,executesornot.,Thegame:Build&Build,randomaction probability:0.2,5,Co-evolutionarybehaviorgeneration,Weusethe,genetic algorithm,togeneratebehaviorsystems thatare accommodatedtoseveral environments.,6,Experiment andResults,55obtainslowerwinning averages forcomplex environment,whileitperformsbetterwhentheenvironmentisrather simple.,7,Introduction,Itischallengeable formany researchers to apply AI to controlcharacters.(AI producemorecomplex andrealisticgames.),Finitestatemachines,and,rule-based systems,arethe mostpopulartechniques in,designingthe movement of characters,.,While,neuralnetworks,Bayesiannetwork,and,artificial life,arerecentlyadoptedfor,flexiblebehaviors,.,Evolution,generatesuseful strategies,automatically,.,This paper proposes a,reactivebehaviorsystem,composedof,neuralnetworks,ispresented,andthe,systemisoptimized byco-evolution,.,8,Rule based approach,AIofmany computer games is designed with,rulesbasedtechniques,such as,finitestatemachines(FSMs),or,fuzzylogic,.,FSMs haveaweak point of itsstiffness;however,the,movement,ofa characterisapttobe,unrealistic,.,thereisa trend towardsfuzzystatemachine,(FuSM).,9,Adaptation andlearning:NNs,EAs,andArtificial life,The,adaptation,and,learning,ingameswill be oneofthemostmajorissues,makinggamesmoreinterestingandrealistic,.,Neuralnetwork,and,evolutionaryalgorithms,(e.g.genetic algorithm)are promisingartificial intelligencetechniques forlearningincomputergames.,NN-is badly trained,GE-required toomany computationsandweretooslowtoproduce usefulresults.,10,Co-evolution,Bysimultaneouslyevolvingtwoormorespecies withcoupledfitness.,Superiorstrategies foranenvironmenthave beendiscoveredbyco-evolutionaryapproaches.,11,Reactivebehavior,Reactivemodelperformseffectivelysinceitconsidersthe currentsituation only.,Neuralnetworksand behavior-based approachesare recently usedfor thereactivebehaviorofNPCs keepingthe realityofbehaviors.,12,Thegame:Build&Build,Build&Builddeveloped in thisresearchisareal-timestrategic simulationgame,inwhich,twonationsexpandtheirown territory,.,Each nationhassoldierswho individuallybuildtownsandfightagainsttheenemies,whileatown continually produces soldiers fora given period.,13,Thegame:Build&Build,14,Designingthe gameenvironment,Thegamestarts,twocompetitiveunits,ina restrictedland,withaninitialfund,.,Theunitsareabletotakesomeactionsatthenormallandbutnotattherockland.,Aunitcanbuildatownwhenthenationhasenoughmoney,whiletownsproduceunitsusingsomemoney.,15,Designingthegameenvironment,(cont.),16,DesigningNPCs,NPCcanmoveby4directions,aswellasbuildtowns,attackunitsortowns,and,mergewithotherNPCs,.,TheattackactionsareautomaticallyexecutedwhenanopponentlocatesbesidetheNPC.,17,DesigningNPCs,(cont.),18,DesigningNPCs,(cont.),19,Basicbehaviormodel(cont.),Twodifferentgridscalesareusedfortheinputoftheneuralnetworksuchas5,5and1111.,20,Basicbehaviormodel(cont.),Inordertoactivelyseeka,dynamicsituation,themodelselectsarandomactionwith,a,probability(inthispaper,a,=0.2)inadvance.,fiveneuralnetworks,areusedtodecidewhethertheassociating,action,executesornot.,21,Co-evolutionarybehaviorgeneration,Weusethe,geneticalgorithm,togeneratebehaviorsystemsthatareaccommodatedtoseveralenvironments.,Twopair-wisecompetitionpatternsareadoptedtoeffectivelycalculatethefitnessofanindividual.,22,Co-evolutionarybehaviorgeneration,(cont.),Thefitnessofanindividualismeasuredbythescoresagainstrandomlyselected,M,opponents.,23,ExperimentandResults,Fourdifferentbattle,maps=demonstrate,theproposedmethod,ingeneratingstrategies,adaptivetoeach,environment.,24,ExperimentandResults,(cont.),Thecasewith,1111 showsmorediversebehaviors,thanthat with 5,5,since itobserves information ona morelarge area.,55obtainslower winning averages for complex environment,while itperforms betterwhen the environment israthersimple.,25,Experiment and Results,(cont.),Fig.8.Winningratebetween55behavior and 11,11behaviorateachgenerationon map type3.,The1111 showsthebetter performance thanthe55,since it considersmorevariousinput conditions soasto generatediverseactions.,26,Experiment and Results,(cont.),Fortheplain map,5,5 behaviorsystem showsa,simple strategy,thattries to,build atown
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 营销创新


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!