资源描述
单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二层,第三层,第四层,第五层,单击此处编辑母版标题样式,*,第十三章,柠檬酸发酵,柠檬酸,柠檬酸,(Citricacid),分子式为,C,6,H,8,0,7,。外观为白色颗粒状或白色结晶粉末,无臭,具有令人愉快的强烈的酸味,相对密度为,1.6550,。,柠檬酸易溶于水、酒精、不溶于醚、酯、氯仿等有机溶剂。商品,柠檬酸主要是,无水柠檬酸,和,一水柠檬酸,,,前者,在高于,36.6,的水溶液中结晶析出,,后者,在低于,36.6,水溶液中结晶析出,。它天然存在于果实中,其中以柑桔、菠萝、柠檬、无花果等含量较高。,柠檬酸是生物体主要代谢产物之一。,柠檬酸,1784,年由,Scheels,氏发现,1893,年前,主要用柑橘、菠萝、柠檬等果实提取柠檬酸,1893,年德国微生物学家,Wehmer,发现二种青霉菌可以生成柠檬酸,1917,年,Currie,使用黑曲霉浅盘发酵生产柠檬酸,1923,年美国科学家研究成功了以废糖蜜为原料的,浅盘法,柠檬酸发酵,并在比利时设厂生产。,1938,年,Perquin,和,1942,年,Karrow,进行了柠檬酸的深层发酵研究,1951,年美国,Miles,公司首先以淀粉质为原料,经水解后深层发酵大规模生产柠檬酸。,柠檬酸,柠檬酸,我国,1953,年采用浅盘法发酵生产柠檬酸,,1968,年用薯干为原料采用,深层发酵法,生产柠檬酸成功,由于工艺简单、原料丰富、发酵水平高,各地陆续办厂投产,至,20,世纪,70,年代中期,柠檬酸工业已初步形成了生产体系。,我国柠檬酸行业:,产量,位居世界第一;从,技术,上,处于世界领先水平,并远远领先于其他国家,其,优势,在于:,1.,发酵采用的菌种(黑曲霉)具有,双重功能,,当淀粉原料被液化后,即可进行发酵,不需要将淀粉水解成葡萄糖,,简化了生产工艺,降低了生产成本。,2.,采用边糖化边发酵工艺,但发酵周期只有,64,小时,生产,周期,比国外要,短,。,3.,柠檬酸的,产酸速度,大大高于国外水平。,平均产酸速率是国外的,2,倍。,柠檬酸的消费领域:,饮料行业占,40,45,食品添加剂等占,15,20,洗涤剂占,20,30,医药占,5,其它占,10,我国有机酸行业发展的思考(,2011,年,8,月),我国柠檬酸年产能已经达到百万吨,占世界的,70,左右;年产量达,70,余万吨,约占世界的,65,;,年出口量,50,万吨,超过世界贸易总量的一半。我国是世界上最大的柠檬酸出口国,主要出口到印度、美国、欧洲、日本等地。,但在,1970,年时,我国的柠檬酸年产仅有,130,吨,我国柠檬酸发酵生产的回顾和展望,我国于五十年代初期开始柠檬酸,浅盘发酵,研究,,1968,年轻工业部发酵研究所与黑龙江和平糖厂合作,首先完成了,甜菜糖蜜,浅盘表面发酵并投入工业化生产。,1965,年,上海市工业微生物研究所筛选出,N558,菌种,,并与天津工业微生物研究所,南通发酵厂等合作,使之用于工业化生产,并在全国推广,形成我国独特的薯干直接深层发酵法生产柠檬酸。,我国柠檬酸发酵生产的回顾和展望,从七十年代到九十年代,我国一直致力于柠檬酸,生产菌种的改进,,,1990,年,上海市工业微生物研究所完成国家七五攻关项目筛选出,860,菌种,,发酵产酸达,20,,,上海市工业微生物研究所开始以,薯渣,为主原料,以黑曲霉为菌种,固体发酵法生产柠檬酸钙的研究。并于,1977,年中试成功并投入生产,现在全国已有四十余个工厂,采用固体发酵法由薯渣生产柠檬酸及柠檬酸钙产品。,我国以,石油原料,发酵柠檬酸开始于,1970,年,先后在天津、上海、沈阳等地进行研究,并一度投入小规模试验生产,是用正烷烃为原料,以解脂假丝酵母为菌种,发酵产酸达,13,以上,转化率,140,以上,但因柠檬酸只占总酸的,50%,(另一半为异柠檬酸)而且由于成本较高及石油原料紧缺和食用安全性等原因,未能坚持研究和生产。,我国的,发酵技木及生产水平,,特别是菌种及发酵工艺均为世界领先水平。,薯干粉、淀粉、木薯粉、葡萄糖母液等直接深层发酵技术为我国所独有。,国外,发酵罐容积,通常在,200m,3,,并较早实现自动控制;我国的最大柠檬酸发酵罐为,150m,3,一,、,柠檬酸在食品中的应用,1),饮料与冰淇淋,柠檬酸广泛用于配制各种水果型的饮料以及软饮料,柠檬酸本身是果汁的,天然成分,之一,不仅赋于饮料水果风味,而且具有增溶、缓冲、抗氧化等作用,能使饮料中的糖、香精、色素等成分交融协调,形成适宜的口味和风味;添加柠檬酸可以改善冰淇淋的口味,增加乳化稳定性,防止氧化作用。,2),果酱与酿造酒,柠檬酸在,果酱,与,果冻,中同样可以增进风味,并使产品抗氧化作用。由于果酱、果冻的凝胶性质需要一定范围的,pH,值,添加一定量的柠檬酸可以满足这一要求。,当葡萄或其它,酿酒,原料成熟过度而酸度不足时,可以用柠檬酸调节,以防止所酿造的酒口味单薄。柠檬酸加到这些果汁中还有抗氧化和保护色素的作用,以保护果汁的新鲜感和防止变色。,3),腌制品,各种肉类和蔬菜在腌制加工时,加入或涂上柠檬酸可以改善风味,除腥去臭,抗氧化。,4),罐头食品,加入柠檬酸除了调酸作用之外,还有螯合金属离子的作用,保护其中的抗坏血酸,使之不被金属离子破坏。柠檬酸添加到植物油中也有类似的作用。,5),豆制品及调味品,用含有柠檬酸的水浸渍大豆,可以脱腥并便于后续加工。柠檬酸可以用于大豆等豆类蛋白、葵花子蛋白的水解,生产出风味别致的调味品。它也可以用于成熟调味品(酱油等)的调味。,6),其它,柠檬酸在医药、化学等其它工业中也有一定的作用。柠檬酸铁胺可以用作补血剂;柠檬酸钠可用作输血剂;柠檬酸可制造食品包装用薄膜及无公害洗涤剂。,二、柠檬酸发酵微生物,1),黑曲霉(,Aspergillusniger,)的形态特征,目前生产上常用产酸能力强的黑曲霉作为生产菌。,在固体培养基上,菌落由白色逐渐变至棕色。孢子区域为黑色,菌落呈绒毛状,边缘不整齐。菌丝有隔膜和分枝,是多细胞的菌丝体,无色或有色,有足细胞,顶囊生成一层或两层小梗,小梗顶端产生一串串分生孢子。,二、柠檬酸发酵微生物,2),黑曲霉(,Aspergillusniger,)的生理特征,黑曲霉生产菌可在薯干粉、玉米粉、可溶性淀粉糖蜜、葡萄糖麦芽糖、糊精、乳糖等培养基上生长、产酸。,生长最适,pH,因菌种而异,一般为,pH37,;产酸最适,pH,为,1.82.5,。,生长最适温度为,3337,,产酸最适温度在,2837,,温度过高易形成杂酸;,斜面培养:麦芽汁,4Be,的培养基。,二、柠檬酸发酵微生物,黑曲霉以,无性生殖,的形式繁殖,具有多种活力较强的酶系,能利用淀粉类物质,并且对蛋白质、单宁、纤维素、果胶等具有一定的分解能力。,二、柠檬酸发酵微生物,黑曲霉可以边长菌、边糖化、边发酵产酸的方式生产柠檬酸,。,三、柠檬酸发酵机理,关于柠檬酸发酵的机制有多种理论,目前大多数学者认为它与三羧酸循环有密切的关系。,糖经糖酵解途径,(EMP,途径,),,形成丙酮酸,丙酮酸羧化形成,C4,化合物,丙酮酸脱羧形成,C2,化合物,两者缩合形成柠檬酸。,柠檬酸的溢出代谢,:,多种微生物均能因受刺激而过量合成柠檬酸。研究柠檬酸溢出代谢的最好的例子无疑是黑曲霉。,黑曲霉之所以能在特定环境条件下累积柠檬酸,是因为在这种环境条件下代谢途径前段的运转速率大于后段的运转速率。,柠檬酸的溢出代谢是黑曲霉特有的,遗传,和,生化机制,与,培养条件,共同起作用的结果。 引起溢出代谢的,原因,包括以下,三个方面,:,高水平的柠檬酸合成能力,。,这个能力由,3,个因素构成。第一:是在有高浓度草酰乙酸(,OAA,)的情况下对,AcCoA,具有高度亲和力的,组成型,的,柠檬酸合成酶,(,CS,),的存在;第二:是催化丙酮酸(,PYR,)固定,CO,2,生成草酰乙酸反应的高水平的,组成型,的,丙酮酸羧化酶,(,PC,),的存在;,第三:是在缺少锰的条件下,蛋白质分解或蛋白质合成受阻造成的,铵的高浓度,能解除柠檬酸,(,CTA,),对,磷酸果糖激酶(,PFK,),的抑制。,此外,,柠檬酸的分泌,降低其胞内浓度。,较低的降解柠檬酸的能力。,这能力由两个因素构成。,第一:是,低,水平的,-,酮戊二酸脱氢酶,(,KD,)影响,TCA,环运行的畅通程度,使,TCA,环前半部的中间产物积压;,第二:在,锰,缺乏的条件下,,顺乌头酸酶(,AE,),和,异柠檬酸脱氢酶(,ID,)的,活性降低,,从而使柠檬酸的累积比其它几种酸(顺乌头酸、异柠檬酸和,-,酮戊二酸)更明显。,在柠檬酸过量合成阶段,,培养基的,pH,值,显然会影响细胞膜对目的产物柠檬酸的,跨膜输送,;柠檬酸的分泌也会影响,培养基的,pH,值,。,锰,与,铁,的缺乏有利于柠檬酸的排出,。,黑曲霉中柠檬酸的代谢溢出,G,G-6-P,(,磷酸果糖激酶,),柠檬酸,NH,4,I,+,A,1.6,二磷酸果糖,丙酮酸,草酰乙酸,乙酰,CoA,柠檬酸,顺乌头酸,异柠檬酸,-,酮戊二酸,(,丙酮酸羧化酶,),(,柠檬酸合成酶,),-,酮戊二酸脱氢酶,异柠檬酸脱氢酶,顺乌头酸酶,顺乌头酸酶,TCA,循环在柠檬酸积累中的调节,1),大量生成,草酰乙酸,是积累柠檬酸的关键;,2),丙酮酸羧化酶,和,柠檬酸合成酶,基本上不受代谢调节的控制或极微弱,;,3)TCA,循环的阻断或微弱,(,即,顺乌头酸酶,、,异柠檬酸脱氢酶,和,酮戊二酸脱氢酶,活力降低,),,导致柠檬酸积累。而且,,当,柠檬酸浓度超过一定水平,就抑制异柠檬酸脱氢酶活力来提高自身的积累,。,回补途径,TCA,循环重要功能除产能外,为一些氨基酸和其它化合物的合成提供了中间产物;,生物合成中所消耗的中间产物若得不到补充,循环就会中断;,回补方式:,通过某些化合物的,CO,2,固定作用,,一些转氨基酶所催化的反应也能合成草酰乙酸和,-,酮戊二酸,,通过乙醛酸循环,通过某些化合物的,CO,2,固定作用使三羧酸循环的中间产物得到回补:,丙酮酸羧化酶:,CO,2,+,丙酮酸,+ATP+H,2,O,Mg+,草酰乙酸,+ADP+Pi,磷酸烯醇式丙酮酸羧化酶,:,CO,2,+PEP+ H,2,O,草酰乙酸,+H,3,PO,4,苹果酸酶,:,CO,2,+,丙酮酸,+NADPH+H,+,苹果酸,+ NADP,+,为了能够在己糖或戊糖的中间代谢物上进行好氧生长,,异养微生物,至少要具备上述几种酶之种的一个酶。,CO,2,固定作用补充,TCA,环的中间产物,转氨基作用,定义:,-,氨基酸,的氨基通过酶的催化,转移到,-,酮酸,的酮基上,生成相应的氨基酸;原来的,-,氨基酸则转变成相应的,-,酮酸,。,R,1,CHNH,2,+,COOH,R,2,C=O,COOH,R,1,C=O +,COOH,R,2,CHNH,2,COOH,转氨酶,转氨基作用几点说明:,(,1,)可逆反应,,(,2,)转氨酶的辅酶是磷酸吡哆醛和磷酸吡哆胺,(,3,)重要的转氨酶:,丙氨酸转移酶(,ALT,),/,谷丙转氨酶(,GPT,),天冬氨酸转移酶(,AST,),/,谷草转氨酶,(GOT),ALT,常用于肝疾患(肝炎等)辅助诊断、,AST,用于心肌疾患(心肌梗塞等的辅助诊断),CH,3,H-C-NH,2,+,COOH,COOH,(,CH,2,),2,C=O,COOH,丙氨酸,-,酮戊二酸 丙酮酸 谷氨酸,ALT,:,谷丙转氨酶,急性肝炎时血清,ALT,活性显著增高。,ALT,CH,3,C=O,+,COOH,COOH,(,CH,2,),2,H- C-NH,2,COOH,COOH,CH,2,+,H-C-NH,2,COOH,COOH,(,CH,2,),2,C=O,COOH,AST,天冬氨酸,-,酮戊二酸 草酰乙酸 谷氨酸,AST,:,谷草转氨酶,心肌梗塞时血清含量明显增高,.,COOH,CH,2,+,C=O,COOH,COOH,(,CH,2,),2,H-C-NH,2,COOH,乙醛酸循环,草酰乙酸,柠檬酸,琥珀酸,异柠檬酸,苹果酸,延胡索酸,乙醛酸,乙酰,CoA,乙酰,CoA,乙酸,乙酸,乙醛酸循环,能够利用乙酸的微生物具有乙酰,CoA,合成酶,它使乙酸转变为乙酰,CoA,;,然后在,异柠檬酸裂解酶,和,苹果酸合成酶,的作用下进入乙醛酸循环。,乙醛酸循环的主要反应,:,异柠檬酸 琥珀酸,+,乙醛酸,乙醛酸,+,乙酸 苹果酸,琥珀酸,+,乙酸 异柠檬酸,净反应:,2,乙酸 苹果酸,柠檬酸发酵机理,大量的胞内,NH,4,+,和呼吸活性提高,使通过糖酵解途径的代谢得到加强。葡萄糖经,EMP,通路分解成为丙酮酸,进入三羧酸循环,在丙酮酸脱氢酶复合物作用下氧化成为乙酰,CoA,及,CO,2,,然后在柠檬酸合成酶作用下与草酰乙酸缩合而形成柠檬酸,而异柠檬酸脱氢酶、乌头酸酶因受到抑制,而使柠檬酸得以积累。,葡萄糖,丙酮酸,+,丙酮酸 乙酰辅酶,A(CH,3,CO-CoA),CO,2,固定反应,+,草酰乙酸,顺乌头酸酶,柠檬酸,异柠檬酸,异柠檬酸脱氢酶,琥珀酸,KGA,(柠檬酸合成酶),柠檬酸发酵机理,按照正常的微生物菌体的代谢规律,上述途径并不能够积累柠檬酸,而是进入,TCA,循环,被彻底氧化,柠檬酸产生菌之所以能够大量积累柠檬酸,其产生菌菌种必须具备一定的内在因素,也就是:柠檬酸后述的各种酶,主要是,,顺乌头酸酶、异柠檬酸脱氢酶酶,的活性丧失或非常微弱,否则,合成的柠檬酸迅速被降解成其他物质。,柠檬酸生物合成中的,代谢调节与控制,追求柠檬酸的高产率,柠檬酸是微生物生长代谢过程中的一个中间性产物,在正常的微生物体内不能够积累的,如果有积累的话,与柠檬酸合成有关的各种酶的活性,则会受到抑制或阻遏,那么,柠檬酸发酵过程中,这种抑制或阻遏是如何被克服的呢,?,1.,磷酸果糖激酶(,PFK,)活性的调节,从葡萄糖柠檬酸的合成过程中,,PFK,是一种,调节酶,或者称之为关键酶,其酶活性受到,柠檬酸的强烈抑制,,这种抑制必须解除,否则,柠檬酸合成的途径就会因为该酶活性的抑制而被阻断,停止柠檬酸的合成,,研究表明,微生物体内的,NH,4,+,,可以解除柠檬酸对,PFK,的这种反馈抑制作用,在较高的,NH,4,+,的浓度下,细胞可以大量形成柠檬酸,,那么,NH,4,+,浓度是如何升高的呢,?,在正常情况下,,柠檬酸、,ATP,对磷酸果糖激酶有抑制作用,,而,AMP,、无机磷、铵离子对该酶则有激活作用,,特别是,还能解除柠檬酸、,ATP,对磷酸果糖激酶的抑制作用,。,铵离子浓度与柠檬酸生成速度有密切关系,正是由于细胞内铵离子浓度升高,使磷酸果糖激酶对细胞内积累的大量柠檬酸不敏感。,1.,磷酸果糖激酶(,PFK,)活性的调节,研究表明,,柠檬酸产生菌,黑曲霉如果生长在,Mn,+,缺乏的培养基中,,NH,4,+,浓度异常的高,可达到,25mmol/L,,显然,由于,Mn,+,的缺乏,使得微生物体内,NH,4,+,浓度升高,进而解除了柠檬酸对,PFK,活性的抑制作用,使得葡萄糖源源不断的合成大量的柠檬酸。,Mn,+,缺乏如何会使,NH,4,+,浓度升高呢,?,当培养基中,Mn,+,缺乏时,,NH,4,+,浓度升高,同时微生物体内积累几种氨基酸(,GA,谷氨酸,、,Arg,、,Gin,谷氨酰胺,等),这些氨基酸的积累,意味着体内蛋白质的合成受阻,而外源蛋白质的分解速度则不受到影响,这样,NH,4,+,的消耗下降,,NH,4,+,浓度就会升高,微生物体内蛋白质和氨基酸的代谢关系可以使用下图示之:,氨基酸 合成 蛋白质 分解 氨基酸,氨基化合成氨基酸,2.,顺乌头酸酶活性的控制,该酶的丧失或失活是阻断,TCA,循环,大量生成柠檬酸的,必要条件,。通常柠檬酸产生菌体内该酶的活性本身就要求很弱,但在发酵过程中仍需要控制它的活性。由于该酶的,活性受到,Fe,2+,的影响,,控制培养基中的,Fe,2+,的浓度,可以使该酶失活。因此,柠檬酸发酵要求,采用不锈钢反应器,,目的就是控制培养基中的,Fe,2+,的浓度。但是在柠檬酸发酵过程中,,培养基中的,Fe,2+,的浓度又要求不能够低于,0.1mg/L,,原因目前尚没有搞清楚。,随着柠檬酸积累,,pH,降低到一定程度时,使,顺乌头酸酶,和,异柠檬酸脱氢酶,失活,(,顺乌头酸酶、异柠檬酸酶在,pH2.0,时失活,),,更有利于柠檬酸的积累及排出细胞外。,顺乌头酸酶的活性,:从理论上推测,顺乌头酸酶失活,三羧酸循环阻断是累积柠檬酸的必要条件。,许多实验指出顺乌头酸酶活力变化与柠檬酸累积有密切关系。,例如,产酸菌株的顺乌头酸酶活力比非产酸菌株低,产酸期比生长期低,生长在产酸培养基上菌株的顺乌头酸酶活比生长在非产酸培养基上的低,。,添加顺乌头酸酶抑制剂可促进柠檬酸积累。,铁为顺乌头酸酶的激活剂,用亚铁氰化钾除铁,可以握高柠檬酸产率。,那么,解决了柠檬酸发酵过程中的上述几个问题:,,,是不是就意味着可以将葡萄糖源源不断的转化成柠檬酸呢,?,提问,:根据微生物代谢调节的基本理论,还需要解决什么问题,?,菌体要大量合成柠檬酸,从葡萄糖经过,EMP,到柠檬酸整个代谢途径需要畅通,在这个过程中:,丙酮酸氧化脱羧,每分子丙酮酸可产生一分子的,NADH,,在有氧的条件下,每分子的,NADH,经过呼吸链彻底氧化成,H,2,O,,并氧化磷酸化产生,3,分子的,ATP,,造成了微生物体内,能荷,的增加,,能荷增加则抑制,PFK,等关键酶的酶活性,,使得从葡萄糖到柠檬酸的,代谢停止,,,怎么能够大量合成柠檬酸呢,?,3.,能荷,调节对柠檬酸发酵的影响,如果,NADH,(还原型)不能够快速的被氧化转变成,NAD,(氧化型),则整个反应就会因为缺乏作为推动力的氧化型的,NAD,而停止,仍然不能够合成柠檬酸。,柠檬酸产生菌可在,有氧,的条件下大量生成柠檬酸,,也就是说,,NADH,即被氧化了,又没有产生,ATP,。,为了解释这种现象,有人,提出了一种假设,:该菌体内存在一条,侧系呼吸链,,,NAD(P)H,经过该呼吸链,可以正常的传递,H,+,,将其氧化为,H,2,O,,但是并没有氧化磷酸化生成,ATP,,能够正常产生,ATP,的呼吸链称之为,标准呼吸链,。,解偶联剂(,uncoupler,),?,使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂为离子载体或通道,能增大线粒体内膜对,H,+,的通透性,消除,H,+,梯度,因而无,ATP,生成,使氧化释放出来的能量全部以热的形式散发。动物棕色脂肪组织和肌肉线粒体中有独特的解偶联蛋白,(uncoupling proteins,,,UCPs),,与维持体温有关。常用解偶联剂主要有:,质子载体:,2,,,4-,二硝基酚,(DNP,,图,),,羰基,-,氰,-,对,-,三氟甲氧基苯肼,(FCCP),。,质子通道:增温素(,thermogenin,)。,其它离子载体:如缬氨霉素。,某些药物:如过量的阿斯匹林也使氧化磷酸化部分解偶联,从而使体温升高。,实验证明,在某些微生物体内确实存在,侧系呼吸链,,该侧系呼吸链中的酶系强烈需氧,如,在柠檬酸的发酵中,发酵液的溶氧浓度在很低水平维持一段时间,或中断供氧一段时间(,20,分钟),则这一侧系呼吸链,不可逆的失活,,其结果是菌体不再产酸,而是产生了大量的菌体。,标准呼吸链的存在使得菌体在代谢过程中产生了大量的,ATP,,用于菌体自身的生长上,这种现象,在生产上通常称之为:,只长菌不产酸,,大量的葡萄糖被消耗了,却没有生产出柠檬酸,是一种失败,(,大型柠檬酸生产企业需要自己备用的发电系统,)。,理论可以指导实践,反过来,通过实践可以推动理论研究,丰富理论研究成果。,科学研究过程中的许多基本规律是相同的,今天,我们在大学的学习,更多的是学习一种方法或者说一种思维。通过这个例子,我们可以学习到许多专业以外的知识,首先为了解释一种客观想象,提出一种假设,然后通过实验来证明这种假设,CO,2,固定反应,通过,CO,2,固定反应提供,C4,二羧酸,(,1,)磷酸烯醇式丙酮酸,+ CO,2,=,草酰乙酸(,C4,二羧酸),酶:磷酸烯醇式丙酮酸羧化酶,(,2,)丙酮酸,+ CO,2,=,草酰乙酸(,C4,二羧酸),酶:丙酮酸羧化酶,以上两种,CO,2,固定反应所需要的辅酶都是,生物素,。,柠檬酸发酵中,三个控制点,C,6,H,12,O,6,控制,Mn,+,NH,4,+,浓度,解除柠檬酸对,PFK,的抑制,(,1,)点:,EMP,畅通无阻,控制溶氧,防止侧系呼吸链失活,丙酮酸,+,丙酮酸,(,2,)点:通过,CO,2,固定反应生成,C4,二羧酸,乙酰辅酶,A + C4,二羧酸,柠檬酸,(,3,)点:柠檬酸后述的酶活性丧失或很低,控制培养基中的,Fe,2+,的浓度,柠檬酸发酵中,三个控制点,第一个调节酶是磷酸果糖激酶(,PFK,),柠檬酸和,ATP,对该酶有抑制,生产菌需要解除该抑制作用,AMP,、无机磷以及,NH,4,+,对该酶有活化作用,NH,4,+,有效解除柠檬酸和,ATP,对该酶有抑制 ,故生产上通过添加铵盐来提高柠檬酸产量,Mn,2+,的影响:,Mn,2+,缺乏,菌体的,TCA,酶活下降,Mn,2+,缺乏,可能干扰蛋白质合成,导致蛋白质分解,NH,4,+,水平升高,减少柠檬酸对该酶的抑制,第二个调节点:,CO,2,固定的酶活力高,保证草酰乙酸的供应,第三个调节点:,TCA,环上调节,柠檬酸合成酶:,许多细胞中该酶是,TCA,的调节酶,但在黑曲霉中此酶无调节作用,顺乌头酸水合酶:,理论上此酶失活,TCA,环阻断,积累柠檬酸,顺乌头酸水合酶需要,Fe,2+,故在发酵液中添加黄血盐络合,Fe,2+,阻断,TCA,环,积累柠檬酸,柠檬酸生物合成途径,柠檬酸的积累机制总结,1),由于,Mn,2,缺乏,抑制了蛋白质合成,导致细胞内,NH,4,浓度升高,和有一条呼吸活力强的不产生,ATP,的,侧系呼吸链,,这两方面的原因分别,解除了对磷酸果糖激酶(,PFK,)的抑制,促进了,EMP,途径的畅通,;,2),由于,丙酮酸羧化酶是组成型酶,,不被调节控制,就源源不断地提供草酰乙酸(,CO,2,固定)。,丙酮酸氧化脱酸生成乙酰,-CoA,和,CO,2,固定,两个反应的,平衡,,以及,柠檬酸合成酶不被调节,,增强了合成柠檬酸能力。,柠檬酸的积累机制总结,3),顺乌头酸水合酶,在催化时建立以下平衡:柠檬酸顺乌头酸异柠檬酸,9037,;,4),控制,Fe,2+,含量,,,顺乌头酸酶,活力低,使柠檬酸积累;,5),一旦柠檬酸浓度升高到某一水平就,抑制异柠檬酸脱氢酶活力,,从而进一步促进了柠檬酸自身积累;,6),柠檬酸积累,使,pH,值降低,在,低,pH,值,下,,顺乌头酸酶和异柠檬酸脱氢酶失活,,就更有利于柠檬酸的积累并排出体外。,柠檬酸积累的理想条件:,1,、提高磷酸果糖激酶的活性,2,、提高丙酮酸羧化酶的活性,3,、提高柠檬酸合成酶的活性,4,、抑制顺乌头酸酶的活性,5,、抑制异柠檬酸脱氢酶的活性,6,、抑制,-,酮戊二酸脱氢酶的活性,7,、抑制异柠檬酸裂解酶的活性,柠檬酸发酵需要下述,环境条件,(1),磷酸盐浓度低;,(2),氮源用,NH,4,+,盐;,(3)pH,值低(,3.0,);,(4),溶氧量高;,(5)Mn,2+,、,Fe,2+,、,Zn,2+,含量极低。,柠檬酸发酵的产率,1.,无,CO,2,固定反应的产率,192 /( 1801.5) = 71.1%,2.,通过,CO,2,固定反应提供,C4,二羧酸,(无碳原子损失),192 / 180 = 106.6%,C,6,H,12,O,6,C,6,H,8,O,7,(C,没有增加,),可见,,CO,2,固定反应与柠檬酸发酵的重要性,C,6,H,8,O,7,H,2,O,理论转化率:,116.7%,柠檬酸发酵实验,柠檬酸发酵,一、,菌种,:产生柠檬酸的菌种很多,以,霉菌,为主,又以,黑曲霉,产生柠檬酸的能力较强,并能利用多种碳源,故常是生产上使用的菌种。,二、发酵,机理,:细胞内有三羧酸循环和乙醛酸循环;柠檬酸合成酶活力较高,而乌头酸酶或异柠檬酸脱氢酶可被某些因素,如金属离子的缺乏,受到抑制,这有利于柠檬酸的积累。,柠檬酸发酵,三、,工艺流程,:,发酵液的,pH,值,对柠檬酸生成影响很大;,pH23,时,发酵产物主要是柠檬酸;,pH,值中性或碱性时,会产生较多草酸和葡萄糖酸;, 可往培养基中加入,亚铁氰化钾,或采取,育种,手段,改造菌种,,使,乌头酸酶,或,异柠檬酸脱氢酶,缺失或尽量降低活性,以,阻碍,TCA,循环,的正常进行,从而增加柠檬酸的积累。,四、柠檬酸发酵用原料,柠檬酸发酵的原料有三大类,糖质原料,(,甘蔗废糖蜜、甜菜废糖蜜,),、,淀粉质原料,(,主要是番薯、马铃薯、木薯等,),正烷烃类原料。,营养物浓度对发酵的影响,对生成量和组成都有影响,黑曲霉柠檬酸发酵,蔗糖浓度,15%18%,,蔗糖同化率,97%,蔗糖浓度,20%,,只同化,92%,蔗糖浓度低于,10%,,产柠檬酸少,积累草酸,蔗糖浓度低于,2.5%,,不产柠檬酸,五、柠檬酸发酵工艺,1),试管斜面菌种培养,察氏琼脂培养基,:,NaNO,3,3g,,蔗糖,20g,,,K,2,HPO,4,1g,,,KCl0.5g,,,MgSO,4,.7H,2,O0.5g,,,FeSO,4,0.01g,,琼脂,20g,,用水定溶至,1000ml,,,pH,自然。,察氏,-,多氏琼脂培养基,:蔗糖,30g,,,NaNO,3,2g,,,MgSO,4,.7H,2,O0.5g,,,KH,2,PO,4,1g,,,KCl0.5g,,,FeSO,4,.7H2O0.01g,,溴甲分绿,0.4g,,琼脂,20g,,蒸馏水,1000ml,,,pH,自然。,1),试管斜面菌种培养,蔗糖合成琼脂培养基,:蔗糖,140g,,,NH,4,NO,3,2g,,,KH,2,PO,4,2g,,,MgSO,4,.7H,2,O0.25g,,,FeCl,3,.6H,2,O0.02g,,,MnSO,4,.4H,2,O0.02g,,麦芽汁,20ml,,琼脂,20g,,用水定溶至,1000ml,。,米曲汁琼脂培养基,:一份米曲加四倍质量的水,于,55,保温糖化,34,小时后煮沸,滤液用水调整浓度至,10Bx,,并用碱液将,pH,调制到,6.0,,接着添加琼脂,2%,。确认所制成的斜面无杂菌污染后,接入黑曲霉孢子悬液,0.1ml,,于,32,培养,45d,。,2),种子扩大培养,二级扩大培养,a,培养基,有琼脂固体培养和液体表面培养两种方法,前者的培养基组成与斜面培养基相同,后者的组成如下:麦芽汁,7BX,,氯化铵,2%,,尿素,0.1%,,,2),种子扩大培养,二级扩大培养,b,培养,固体培养,时,,500ml,茄子瓶装,80ml,琼脂培养基,,250ml,茄子瓶装,50ml,琼脂培养基。灭菌后摆成斜面,凝固后的斜面至,37,下培养,24h,。确认无杂菌污染即可使用。,液体培养,时,将液体培养基装入三角瓶中,使液层深度达,45cm,,于,0.1MPa,下湿热灭菌,15min,。按无菌操作接种。培养温度,32,。液体表面需,710d,,琼脂固体培养需,67d,。,三级扩大培养,可采用麸曲固体培养、液体表面培养或琼脂固体培养。,所用培养基如下:,a,麸曲培养基,: 新鲜小麦麸皮,1kg,,加水,1.11.3L,。液体培养基与第二级扩大培养基所用液体培养基相同。,b,琼脂固体培养基,: 与斜面培养基相同。,现代工业化大生产主要采用深层通风发酵法。,日本约,1,5,的柠檬酸产品是利用,固态发酵法,生产的,,浅盘发酵法,在前苏联、印度、捷克波兰、保加利亚、阿根廷等国家主要使用,,我国、美国及西欧共同体国家则主要采用,液体深层发酵法,进行生产,3,)发酵生产 工艺流程,以薯干粉为原料的液体深层发酵工艺流程,:,斜面菌种麸曲瓶种子 薯干粉调浆灭菌,(,间歇或连续式,),冷却发酵发酵液提取成品 无菌空气,薯渣为原料的固体发酵工艺流程,: 试管斜面三角瓶菌种种曲 薯渣粉碎蒸煮摊凉接种装盘发酵出曲提取成品 米糠,3,)发酵生产 工艺流程,柠檬酸的深层液体发酵工艺,薯干原料柠檬酸深层发酵工艺,米曲汁斜面,茄子瓶,种子罐菌丝培养(也可以孢子接种),发酵培养(,32,,,5,5.5,天),成熟的发酵液,(或,10,20,麦芽汁 ,0.1%KH,2,PO,4,),16,的薯干粉,,-,淀粉酶液化,液体发酵,a,不置换法,培养液一次加入,发酵结束后弃去菌盖,发酵液用来提取柠檬酸。,具体操作,:接种后,培养温度维持在,35,,这是黑曲霉的适宜生长温度,需维持,72h,左右,以促进孢子发芽及菌体发育。当温度逐渐下降时,必须通人约,50,的空气以维持,35,的培养温度,通风量为,35m,3,/m,2,.h,。接种后,20h,左右可出现灰白色、很薄的菌膜,,72h,时菌膜已完全形成,菌膜相当厚且有皱褶。,48h,起由于菌体耗氧增加,可开动另一组风管向盘层之间通汽,进汽温度为,40,左右,风量为,7m,3,/m,2,.h,,进汽湿度为,75%,以上,以防培养液水分蒸发过快。,接种后,72h,起进入,产酸期,,这时菌体代谢速率高,耗糖快,发酵液酸度急剧升高,并释放出大量热,最高时可达,1000kJ/(m,2,.h),,此时应加强通风措施,严格将发酵温度控制在,2628,,以利柠檬酸的形成。,因此,一般在进入产酸期前,8h,左右需增大风量至,1518m,3,/m,2,.h,,且降低进汽温度在,25,以下,湿度仍在,75%,以上。,160h,以后发酵结束。,b,置换法,置换法一般是采用糖浓度低而营养较丰富的培养液先培养菌盖,待菌盖形成之后再更换发酵培养基。可更换,1,次也可数次,发酵液用来提取柠檬酸。,培养菌盖,一般使用,5%,的糖液,视糖蜜质量再补充少量,NH,4,NO,3,、,K,2,HPO,4,等盐类。接种孢子后,室温保持在,3436,,培养液品温为,3234,,使孢子发芽,正常情况下,40h,即可形成紧密有皱的菌盖。菌盖形成后,放掉培养基,更换发酵培养基,(,即第,1,次置换,),,并将室温降至,3032,,待发酵,4860h,后再放掉发酵液,加入新培养液即进行第,2,次置换。如此重复,一般可置换培养基,810,次,总发酵周期为,1420d,,,收集起来的发酵液,用来提取柠檬酸。,置换法的,优点,是节省了大量培菌时间,发酵速度快,而且原本不适宜长菌的原料都可用作发酵培养基。,但为了保持,菌盖的高活性,,不能将发酵液残糖控制得很低,这样一来就造成替换出来的发酵液其,残糖量较高,,给后道,提取,柠檬酸带来,困难,。,c,不置换法影响表面发酵的因素,a),培养液层厚度,培养基液层厚度大,发酵产物总的生成量就大。如果原料质量好,预处理方法得当,曲霉菌丝体活力强,那末可适当增加液层厚度,;,相反,就应减少液层厚度。,c,不置换法影响表面发酵的因素,b),糖浓度,用于表面发酵的糖蜜浓度,质优的糖蜜浓度,(,以蔗糖浓度计,),为,18%22%,较适宜,而质劣的糖蜜一般采用,14%,。,在表面发酵中,大约,80%,的糖被用于合成柠檬酸,菌体生长增殖耗糖,8%,左右,菌体进行呼吸消耗的糖在,10%,左右,另有,1%2%,的糖用于合成副产物。,c),温度,黑曲霉生长最适温度,33-37,,积累柠檬酸的最适温度在,32,黑曲霉适宜产酸温度是,2628,。温度高,容易形成杂酸等副产物且菌体易衰老;温度低,发酵周期被延长。,d),pH,值,黑曲霉长菌的最适,pH,为中性,而产酸的最适,pH,在,2.52.0,。因此,应该注意的是:菌盖形成之后,只是在菌盖下面有一个低,pH,区域,菌体合成柠檬酸的活动都是在这低,pH,区域内进行的,所以不应该搅动发酵液,避免低值区域的,pH,值上升而长菌不产酸。,黑曲霉发酵柠檬酸,,pH 3.0,以下积累柠檬酸,,pH 3.0,以上积累草酸,,pH5.0,容易积累葡萄糖酸,与,不同碳源,有关,黑曲霉在合成培养基上产柠檬酸,pH2.5,,在糖蜜上,6.8,,在薯干粉,4.5,e),通风,表面发酵是气相传氧,因此传氧效率较高,所以只要保持发酵室内有适当空气流通就可以满足霉菌对氧的需要。较高度的,CO,2,会影响菌体的生长和降低产酸能力。一般将,CO,2,控制在,3%,以下。,固体发酵,a,浅盘发酵,将曲置于曲室内培养,室温可按需要调节。在孢子发芽和菌丝生长期,由于产生的热量少,品温会逐渐下降,在入室后自,18h,内,应维持品温在,2731,。培养,1848h,期间,由于发酵热的大量释放,品温上升很快,应采取措施,不得让品温超过,43,菌体活力下降,所以品温会下降,此时应维持在,35,左右,直至发酵结束。,固体发酵,a,浅盘发酵,为了克服上、下曲盘的,温差,,在发酵,40h,左右时应将曲盘上下对调。整个发酵期间不必翻曲。曲室相对湿度在,85%90%,。,发酵终点根据酸度来判定,从,48h,开始,测量酸度,,以后每隔,12h,测定,1,次,自,72h,以后则每隔,4h,测定,1,次,在酸度达到最高时即出料,否则时间延长,柠檬酸反而被菌体消化。,b,厚层通风发酵,与浅盘发酵明显不同的是,在物料铺摊厚度上,厚层发酵的曲醅厚度在,50cm,左右,比浅盘发酵的,1520cm,要大出许多。,为了给曲霉菌提供氧,在培养过程中需要进行机械通风。,b,厚层通风发酵,培养过程中的温度控制与浅盘发酵的温度管理相似,但最高品温不能超过,40,。温度和湿度主要靠通风来调节,因为物料厚度大,所以培养过程中需要翻料。,厚层发酵比浅盘发酵优越之处在于:,占地面积少,污染杂菌可能性小,机械化程度高,。,六、固定化黑曲霉发酵玉米生产柠檬酸,用固定化黑曲霉细胞发酵玉米生产柠檬酸的最适温度是,35,玉米糖液浓度,10Bx,。在最适条件下柠檬酸产量可达到,96g/L,一般稳定在,89g/L,。,六、固定化黑曲霉发酵玉米生产柠檬酸,固定化黑曲霉可连续使用,24d(,约,8,批次,),。黑曲霉细胞固定化后,产酸活力与降糖能力均与游离细胞水平相近。但在连续分批发酵中,固定化黑曲霉细胞显示出明显的优势,即,:,游离细胞连续使用,2,批次后,柠檬酸产量迅速下降,而固定化黑曲霉使用,8,批次后,柠檬酸产量仍可达到,89g/L,的水平。,黑曲霉细胞固定后柠檬酸产量逐步提高并超过游离细胞最高水平,固定化黑曲霉菌体可连续使用,20d,以上,能保证柠檬酸连续发酵的菌种活性时间,从而保证连续发酵的成功。,七、柠檬酸提取方法,柠檬酸发酵液成分复杂,并且因原料和发酵工艺不同而各不相同除柠檬酸外,还包括菌体、残糖、蛋白质、色素、胶体、有机杂酸、无机盐等多种杂质,,总的来说,它们来源于原材料、未消耗的营养盐或发酵的中间副产物,所以从柠檬酸发酵液中提取柠檬酸是比较困难的,从柠檬酸发酵液中提取柠檬酸的方法主要有以下几种:,钙盐法,、,萃取法,、,离子交换吸附法,、,电渗析法,、,超滤膜法,我国独创的薯粉直接深层发酵法工艺处于世界先进水平,且自行开发的黑曲霉菌产酸效率与国外接近,但在提取率、机械化程度和劳动生产率等方面比较落后,,因而在国内研究从发酵液中高效、低能耗地提取柠檬酸是一个极有意义的课题,1,钙盐法,钙盐法是一种传统的从发酵液中提取有机酸的方法,在中国用得最为普遍它是利用柠檬酸钙不溶于水,但能溶于酸的特点,在含柠檬酸的上清液中加人,CaCO,3,或,Ca(OH),2,中和,使柠檬酸生成柠檬酸钙沉淀,固液分离后,柠檬酸钙经过洗涤再用硫酸酸解,生成柠檬酸水溶液,再经过脱色、去除阴、阳杂离子后得到提取液进入浓缩、结晶工序得到纯柠檬酸固体产品,柠檬酸的提取常采用钙盐法,工艺过程如下,:,发酵液预处理、过滤,清 液,洗涤菌丝,菌 丝,洗涤水,中 和,见下页,碳酸钙,碳酸钙,中 和,废 液,柠檬酸钙,酸解、脱色(浓硫酸、活性炭),硫酸钙、活性炭,柠檬酸液,离子交换,真空浓缩,结 晶,干燥、成品,洗 涤,硫酸钙、活性炭,母 液,洗涤水,钙盐法因为工艺成熟、设备简单、原材料易得和产品质量稳定等特点而在国内外被广泛使用。,缺陷,日益显露,:,一是得到的提取液中柠檬酸质量分数较低,一般低于,20%,,增大了后续浓缩段的负荷,;,二是单元操作损失多,总收率低,国内厂家一般在,60% 75%.,超过,70%,的很少,对以薯干为原料的生产工艺收率更低,(,我国主要以薯干为原料,);,三是在提取过程中柠檬酸经历了多次相变,消耗化工原料多,固液分离量大,能耗高,;,四是环境污染严重,产生大量的固体废弃物,其排放量,1.0 2.5 t,废物,/t,柠檬酸,在环境问题日益突出的今天,这种方法越来越不适应环保的要求,.,另外还有提取工艺长、工人劳动强度大、工作环境恶劣、提取设备腐蚀严重等缺点,.,2,萃取法,目前研究的萃取剂包括,:,丁醇、丙酮、磷酸三丁醋、,TOA, N,N-,二烷基酰胺、三烷基氧磷、,N-,烷基酰胺和石油亚矾等,但研究得更多的是有机胺,.,反萃取剂大多是热水,但因为热水反萃效率较低,为了提高反萃效率,有人还研究了醋酸水溶液、盐酸的反萃效果,.,3,离子交换吸附法,离子交换吸附法是利用特定的有机高分子树脂对柠檬酸或柠檬酸盐的高选择性,将柠檬酸或柠檬酸盐从发酵液中提取出来的方法,.20,世纪,80,年代以来,国内外对离子交换吸附法提取柠檬酸的研究很多,,国内一般的流程是发酵液过滤后用离子交换柱提取,氨水洗脱后用阳离子交换柱转型,经脱色和除杂质后进人浓缩和结晶,.,4,电渗析法,70,年代国内开始研究用电渗析的方法从发酵液中提取柠檬酸,并取得了一定的进展。,电渗析法提取葡萄糖糖蜜发酵液的工艺流程如图,4,所示发酵液(,pH=1.5,3.0,)经过滤预处理后,用电渗析器分离,并浓缩,2,倍,这种粗提取液再利用活性炭和离子交换除去色素和杂质离子,得到淡黄色、高纯度柠檬酸水溶液,5,超滤膜法,在柠檬酸提取中使用超滤、纳滤和微滤,思考题,1.,柠檬酸发酵过程中有哪几个控制要点,如何控制?,2.,说明柠檬酸发酵过程中氧的重要性。,3.,简述二氧化碳固定反应对于提高柠檬酸产率的意义。,
展开阅读全文