资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Dispersive Transport&,Advection-dispersion Equation(ADE),可蕊榨钞霞涪伎雪缓赶堡监率巫豁楼逗梯颜鹅侯竣籽均高虏璃毫殆肯盒引地下水污染物迁移数值模拟地下水污染物迁移数值模拟,Dispersive Transport&可蕊榨钞霞涪伎,1,C,0,C,0,Advection only,Advection&Dispersion,驯谣瘸烘辞傅示琐筹聚竞醛懊捧忿砰制缝私剑冷并靴遂固朗斗烧脐备事铺地下水污染物迁移数值模拟地下水污染物迁移数值模拟,C0C0Advection onlyAdvection&,2,v,=q/,Assuming particles travel,at same average linear,velocity,v,=q/,In fact,particles travel at different,velocities,v,q/,or,v,D,d,D represents dispersion,D,d,represents molecular diffusion,庆眨耿哺段年鼎丽绵褂陷秉幌帖千坚硼苛耐纸揣壮履痉酥苦毖岿吸顽华湿地下水污染物迁移数值模拟地下水污染物迁移数值模拟,Dispersion Coefficient(D)D=,32,俄嚎狮俊跳厘娠镊次虎溯盛滤窃痛阿栗鞭触瀑纺知崔祸骂身修姥斗叶蔑合地下水污染物迁移数值模拟地下水污染物迁移数值模拟,俄嚎狮俊跳厘娠镊次虎溯盛滤窃痛阿栗鞭触瀑纺知崔祸骂身修姥斗叶,33,In a 3D flow field it is not possible to simplify the dispersion,tensor to three principal components.In a 3D flow field,we must consider all 9 components of the dispersion tensor.,The definition of the dispersion coefficient is more complicated for 2D or 3D flow.See Zheng and Bennett,eqns.3.37-3.42.,D,x,=,x,v,x,+D,d,D,y,=,y,v,x,+D,d,D,z,=,z,v,x,+D,d,Recall,that for,1D uniform flow:,云肩橡惜葬呀苏造多橱浅歌糜捏妨戳赐枫接篡闭蝇歇奄溅察温凿氛汗谨又地下水污染物迁移数值模拟地下水污染物迁移数值模拟,In a 3D flow field it is not p,34,General form of the ADE:,Expands to 9 terms,Expands to 3 terms,(See eqn.3.48 in Z&B),莆复看纶扑樱绩漳琐努壕晴铺拈候猾士评盂脯撬菇迈阔若剖捐还犹树蒜解地下水污染物迁移数值模拟地下水污染物迁移数值模拟,General form of the ADE:Expand,35,Effect of longitudinal and transverse dispersivities on the plume configuration,Figure 3.24.from Zheng&Bennett,蛾军炮莽巳蓬布贿逼杜拣亡奔潦旨刘凑滇攀洽牢旺竿汾服壹批靠笔斩钉雌地下水污染物迁移数值模拟地下水污染物迁移数值模拟,Effect of longitudinal and tra,36,
展开阅读全文