《系统工程绪论》课件

上传人:沈*** 文档编号:252492924 上传时间:2024-11-16 格式:PPT 页数:34 大小:753.50KB
返回 下载 相关 举报
《系统工程绪论》课件_第1页
第1页 / 共34页
《系统工程绪论》课件_第2页
第2页 / 共34页
《系统工程绪论》课件_第3页
第3页 / 共34页
点击查看更多>>
资源描述
系统工程绪论PPT课件,本课件仅供大家学习学习 学习完毕请自觉删除 谢谢 本课件仅供大家学习学习 学习完毕请自觉删除 谢谢,绪论,学习目的,通过学习本课程,使学生掌握系统工程学的基本概念、基本原理和典型技术方法,具备对各类社会经济系统进行系统分析和进行系统工程管理的能力。,教学参考书,:,汪应洛主编,系统工程,机械工业出版社,课堂组织及考核,学时学分,:,32学时,2学分,课程类型,:,专业必修课,教学方法,:,理论讲授+分组讨论+阅读+课程论文,课堂组织,:,将全班分成5个组,以小组为单位进行学习,为了增加、锻炼同学们互相配合与小组协作的能力。,期末考试,:,闭卷考试,成绩评定,:,课上考察(出勤情况、讨论表现、课程论文)30分+期末考试 70分,学习要求,:,阅读教学参考书+听课并记录+阅读资料+认真参加讨论+联系实际思考问题+考前复习,学习方法,注重系统思考,坚持问题导向,采用系统化方法,系统工程学科解决的两类主要问题,第一类,:“问题与解决问题”,“工程性”的问题-“硬”,现有理论与技术应用,新问题理论、技术的创新,“社会经济”的问题“软”,人的价值观、世界观;协协调与妥协?,利益相关者;环境、历史、未来;变化?,第二类:理论、,技术与方法,研究“解决复杂工程问题”的“系统理论与方法”,如何解“复杂决技术问题”的;,复杂大系统的“运营与管理问题”,引,题,引题1-都江堰水利工程,引题2-华罗庚泡茶问题,引题3-,产品结构优化,为什么要修建都江堰呢?,玉垒山,岷江,成都平原,岷江东岸的玉垒山阻碍了江水东流,造成东旱西涝。,都江堰的历史,全长735公里的岷江,是长江最重要的一条支流,她从仙境般的阿坝州走来,沿江两岸山高谷深,水流湍急。到都江堰附近,岷江进入成都平原,便像脱缰的野马一般,一次次冲决堤岸,泛滥成灾,塑造出了不稳定的河床和时分时合的汊道。特别是在都江堰的西南面,有一座玉垒山,阻碍江水东流,每年夏秋洪水季节,常常造成东旱西涝,给两岸生灵带来了无尽的灾难。怎样能让岷江水经过成都,使航道畅通,同时在发洪水时控制水,不使其泛滥平原呢?公元前270年,蜀郡郡守李冰有了一个绝妙的方案修建“都江堰”。,都江堰的历史,四川有一句谚语叫“先有都江,堰,后有天府之国”。从公元前,256年这座世界水利史上的惊世之,作竣工至今已有2200多年,“无坝,引水”的奇迹把成都平原从“水,乡泽国”变成了“天府之国”。,可以这么说,如果没有都江堰,,就没有物产丰饶、水旱从人的成都平原,也就没有奇异瑰丽的巴蜀文明,,更不会有今天繁荣富庶的中国第四城成都。与平均寿命50年的现代大,坝相比,泽被千古的都江堰向世人证明了疏导治水的成功,也从很多方面,向我们展现了他对大自然神奇而又朴素的力的利用。,造福千秋的都江堰,1、建造者:,3、地点:,秦国李冰父子,2、时间:,战国时期,蜀郡岷江流域,4、修建原因:,排涝防旱,成,岷江,玉垒山,成都平原,A,B,C,岷,江,内 江,外 江,都江堰平面示意图,分水鱼嘴,宝瓶口,飞沙堰,玉 垒 山,A,B,C,A,B,C,5、都江堰的结构和运作原理,分水鱼嘴:使江水分流,内江:灌溉,外江:分洪,飞沙堰:泄洪排沙,宝瓶口:引水灌溉,(1)、结构,和运作原理,(,3)、治水特点:,经验:,(2)、,重在疏导,“深淘滩,低作堰”,(1)分洪减灾、引水灌溉,使成都平原成为“天府之国”;,(2)设计巧妙科学,做到人与自然的和谐。代表了我国当时水利工程的先进水平,是古代劳动人民智慧的结晶。,意义,都江堰水利工程给我们的启发,古人相信河流的生命和灵性,从而没有把都江堰当作一劳永逸的改变和控制河流,使人凌驾于自然之上的工具,而是把他作为自然的一部分,作为与人们息息相连的生命存在。这种崇尚自然的工程设计和东方的哲学思想融为一体,浑然天成,所以才生生不息,历久弥鲜。,我们相信人不能凌驾于自然之上是因为自然之力的强大。而人决不能和自然背道而驰,只有充分的利用自然的力量,才会造福于自己,施福于后人。,世界遗产委员会对都江堰的评价,:建于公元前三世纪,位于四川成都平原西部的岷江上的都江堰,是中国战国时期秦国蜀郡太守李冰及其子率众修建的一座大型水利工程,是全世界至今为止,年代最久、惟一留存、以无坝引水为特征的宏大水利工程。2200多年来,至今仍发挥巨大效益,李冰治水,功在当代,利在千秋,不愧为文明世界的伟大杰作,造福人民的伟大水利工程。,2000年,都江堰被列入“世界文化遗产”名录。,引题2-泡茶问题,华罗庚先生的泡茶,“想泡壶茶喝。当时的情况是:开水没有,开水壶要洗,茶壶茶杯要洗,火已升了,茶叶也有了,怎么办?”,一、问题描述,1.目标:喝到一碗清新的热茶。,2.条件:已有一个茶壶、一包好茶叶、一个燃着的火炉和可用的凉水水源。,3.其它要求:以最节约资源的方式实现目标。,4.系统工程研究任务:为解决喝茶问题设计一个行动计划系统(设计一个解决泡茶问题的行动计划)。,引题2-泡茶问题,二、问题分析,1 资源需求,根据我们的日常经验,现代人类的活动通常需要人、财、物等类资源。在这个泡茶问题上,不涉及资金,所需的资源包括:凉水、茶壶、茶叶、茶碗、火炉。这些资源目前都已齐备,且假设除人外没有限制。,引题2-泡茶问题,2 目标要求,以,最节约资源,的方式泡一壶好茶。,这个问题中,前面提到的各项资源除了人力资源外,都是没有限制的。但实际上,茶壶的大小是确定的,因而所用水是确定的。,再假定炉火的发热量及热效率是确定的,那么,一旦装满水的茶壶放到火上,其消耗的能源也是确定的。,茶叶使用量是有定额的。,引题2-泡茶问题,所以,在泡茶问题上,前述各项资源除随机干扰外,不存在节约问题。这个问题,唯一涉及的节约问题是关于一种既无限又有限的资源时间的节约。,3 系统工程,研究,任务界定,设计一个解决泡茶问题的行动计划,要求合理安排各道工序,最大限度节约时间。,引题2-泡茶问题,三、定性策划几个备选方案,引题2-泡茶问题,根据日常经验,对以上泡茶问题可以有以下三种解法:,甲:,洗净水壶;灌上凉水;壶放在火上;等水开;水开后,以最快的速度洗茶杯,找茶叶;泡茶,待茶泡好;喝茶。,乙:,洗净水壶;洗茶杯;找好茶叶;灌凉水;壶放火上;等水开;水开后,用准备好的茶杯、茶叶泡茶;等待茶泡好;喝茶。,丙:,洗净水壶;灌凉水;壶放火上;洗茶杯;拿茶叶;水开之前,可干一些其它事;水开,泡茶;喝茶。,引题2-泡茶问题,四、方案分析与比较(系统分析),1.列出泡茶所需的全部工序,2.确定每道工序所需的时间,3.确定各道工序之间的时间连接关系,4.分析计算每种方案所需的总时间,5.做出比较结论,引题2-泡茶问题,工序列表,序号,名称,紧前工序,工序时间(分),1,洗壶,无,1,2,灌水,1,0.5,3,放壶,2,0.3,4,等水开,3,15,5,洗杯,无,1,6,找茶叶,无,1,7,泡茶,3,5,6,2.2,8,喝茶,7,引题2-泡茶问题,洗壶,灌水,放壶,洗杯,泡茶,拿茶叶,等水开,1,15,1,1,0.3,0.5,喝茶,2.2,0.3,丙:,洗壶,洗杯,找茶叶,灌水,等水开,放壶,泡茶,1,15,0.3,0.5,1,1,喝茶,2.2,乙:,洗壶,灌水,放壶,等水开,泡茶,洗杯,找茶叶,喝茶,1,2.2,2,15,0.3,0.5,甲:,图1 泡茶系统工程备选方案工序图,方案分析,甲方案总时间=1+0.5+0.3+15+2+2.2=21,乙方案总时间=1+1+1+0.5+0.3+15+2.2=21,丙方案总时间=1+0.5+(0.3+15)+2.2=19,分析结果:丙方案最节约时间。,方案建议:丙,引题2-泡茶问题,泡茶工程经验总结,引题2-泡茶问题,几大步骤:,确定问题,目标分析,需求分析,方案策划,系统分析(统计、计算、比较),决策建议,方案实施,系统原理:,最优化、并行统筹、工序图法,引题3-,产品结构优化,某工厂有3种原料B,1,、B,2,和B,3,,储量分别为170kg、100kg和150kg。现在用此3种原料生产两种产品A,1,和A,2,。已知,每生产1kg A,1,需要5kg B,1,、2kg B,2,和1kg B,3,;每生产1kg A,2,需要2kgB,1,、3kg B,2,和5kg B,3,。又知,每千克A,1,的利润为10元,每千克A,2,的利润为18元。,问:在工厂现有原料储量条件下,应该如何安排生产,才可以使工厂获得最大的利润?,确定问题:实际是公司产品结构的优化问题。即如何安排产品的结构,从而使工厂利润最大化。,确定问题,引题3-,产品结构优化,设安排,A,1,、,A,2,产品的产量分别为,x,1,千克和,x,2,千克,则产品的总利润为,(10 x,1,18x,2,),元。,一般而言,产量越大利润越高,然而,公司产量要考虑到原料储量的限制。就原料,B,1,来说,生产,x,1,千克,A,1,要消耗,5,x,1,千克,B,1,,生产,x,2,千克,A,2,要消耗,2x,2,千克,B,1,,因此共消耗,B,1,为(,5x,1,2x,2,)千克,由于,B,1,的储量仅有,170kg,,所以就有:,5x,1,2x,2,170。,同理根据,B,2,、,B,3,储量的限制,可得,2x,1,3x,2,100,,,x,1,5x,2,150,。最后,考虑到,x,1,和,x,2,为产品的实际产量,因此不能为负数,因此,x,1,0,x,2,0,。,引题3-,产品结构优化,问题分析,因此,该问题的数学模型为:,目标,max,10 x,1,18x,2,约束条件 s.t.,5x,1,2x,2,170,2x,1,3x,2,100,x,1,5x,2,150,x,1,0,x,2,0,最终则归结为一个典型的线性规划问题,引题3-,产品结构优化,问题分析,案例思考,中小学教育问题,城市高房价问题老百姓就医难问题城市交通拥堵问题大学生就业难问题,。,生活中还有那些是类似的问题?,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!