资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,光的衍射现象 惠更斯,-,菲涅耳原理,Diffraction of Light,光的衍射,第二章,Diffraction of Light光的衍射第二章,1,Ch2-1,光的衍射现象,惠更斯,-,菲涅耳原理,Ch2-1 光的衍射现象,2,缝较大时,光是直线传播的。,缝很小时,衍射现象明显。,衍射现象:,波在传播过程中,遇到障碍物将绕过障碍物而偏离直线传播。,光也有衍射现象。,只有,当障碍物的尺寸与波长相当时,,衍射现象才比较明显。,屏幕,阴,影,屏幕,一、光的衍射现象,缝较大时,光是直线传播的。缝很小时,衍射现象明显。衍射现象:,3,针尖,狭缝,圆孔,圆屏,衍射屏(障碍物),入射光波,衍射图样,观察屏,针尖狭缝圆孔圆屏衍射屏(障碍物)入射光波衍射图样观察屏,4,手指缝 眼皮缝都可观察衍射,(,试试看,),泊松点,手指缝 眼皮缝都可观察衍射(试试看)泊松点,5,平面波,t+,t,时刻波面,u,t,波传播方向,球面波,t+,t,二、惠更斯原理内容,介质中任一波阵面上的各点,都是发射子波的新波源,其后任意时刻,这些子波的包络面就是新的波阵面。,根据惠更斯原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。,t,时刻波面,平面波t+t时刻波面ut波传播方向球面波t+t二、惠,6,波在传播过程中,遇到障碍物时其传播方向发生改变,绕过障碍物的边缘继续传播的现象。,利用惠更斯原理可解释波的衍射、反射和折射等现象。,1.,波的衍射,波达到狭缝处,缝上各点都可看 作子波源,作出子波包络,得到新的 波前。在缝的边缘处,波的传播方向发生改变。,当狭缝缩小,与波长相近时,衍射效果显著。,衍射现象是波动特征之一。,水波通过狭缝后的衍射图象。,惠更斯原理的应用,波在传播过程中,遇到障碍物时其传播方向发生改变,绕过,7,当波传播到两种介质的分界面时,一部分反射形成反射波,另一部分进入介质形成折射波。,.,入射线、反射线和界面的法线在同一平面上;,(,1,),反射定律,.,反射角等于入射角。,.,入射线、折射线和界面的法线在同一平面上;,.,(,2,),折射定律,2.,波的反射与折射,当波传播到两种介质的分界面时,一部分反射形成反,8,1815,年,,菲涅尔,根据波的叠加和干涉原理,,在,惠更斯,的,子波假设,基础上,提出了,子波相干叠加,的思想,从而建立了反映光的衍射规律的,惠更斯菲涅耳原理:,三、惠更斯,菲涅尔原理,从同一波阵面上各点所发出的,子波是相干的。波阵面前方空间某点的光振动,就是这些子波到达该点相干叠加的结果。,惠更斯,提出的,子波,概念,可解决波的,传播方向,的问题。,菲涅,尔,提出,子波干涉,的概念,可解决,能量分布,问题。,1815年,菲涅尔根据波的叠加和干涉原理,,9,:波阵面上面元,(子波波源),子波在 点引起的振动振幅 并与 有关。,:,时刻波阵面,*,惠更斯,菲涅尔原理的数学表达式,:波阵面上面元 子波在 点引起的振动振幅 并,10,C,比例常数,K,(,),倾斜因子,惠更斯,菲涅耳原理解释了,波为什么不向后传,的问题,这是惠更斯原理所无法解释的。,P,点的光振动,(,惠,菲原理,的数学表达式),为:,C 比例常数K()倾斜因子 惠更,11,根据这一原理,原则上可计算任意形状孔径的衍射问题。,为了避免复杂的积分运算,,实际中常用,半波带法,和,振幅矢量法等。,:波阵面上面元,(子波波源),:,时刻波阵面,*,根据这一原理,原则上可计算任意形状孔径的衍射,12,光源或接收屏距离衍射屏为有限远,-,菲涅耳衍射均满足傍轴近似,光源或接收屏距离衍射屏都相当于无限远,衍射物上的入射波和衍射波都可看成平面波,夫琅禾费衍射均满足远场近似,光源,障碍物,接收屏,光源,障碍物,接收屏,四、菲涅尔衍射和夫琅禾费衍射,光源或接收屏距离衍射屏为有限远-菲涅耳衍射均满足傍轴近似,13,观察比较方便,但定量计算却很复杂。,计算比较简单。,光源、屏与缝相距有限远,光源、屏与缝相距无限远,夫 琅 禾 费 衍 射,菲 涅 尔 衍 射,在实验中实现,夫琅禾费衍射,观察比较方便,但定量计算却很复杂。计算比较简单。光源、屏,14,菲涅耳衍射,夫琅禾费衍射,1,源和场点均满足傍轴近似 但不满足远场近似,源点和场点,均满足远场近似,2,源和场点或而者之一在有限远,源和场点均在无限远,3,非平行光衍射,平行光衍射,4,光源和接收平面,非物像共轭面,光源和接收平面,为物像共轭面,衍射分类的几种表述,菲涅耳衍射 夫琅禾费衍射 1源和场点均满,15,重点:,惠更斯,菲涅耳原理,单缝夫琅禾费衍射,光栅衍射。,难点:,单缝夫琅禾费衍射中半波带法的理解和运用。单缝明、暗纹条件及其原因。,光栅衍射中条纹的成因和对条纹的缺级分析。,重点:,16,
展开阅读全文