资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,鲁教版八年级,全章高频考点专训,第六章特殊平行四边形,1,2,3,4,5,温馨提示,:,点击 进入讲评,习题链接,6,7,8,9,10,11,12,13,如图,,AC,,,BD,相交于点,O,,且,O,是,AC,,,BD,的中点,点,E,在四边形,ABCD,外,且,AEC,BED,90,,求证:四边形,ABCD,是矩形,1,证明:连接,EO,,如图所示,O,是,AC,,,BD,的中点,,AO,CO,,,BO,DO,,,四边形,ABCD,是平行四边形,【,中考,广安】,如图,四边形,ABCD,是菱形,点,E,,,F,分别在边,AB,,,AD,的延长线上,且,BE,DF,,连接,CE,,,CF,.,求证:,CE,CF,.,2,证明:,四边形,ABCD,是菱形,,BC,CD,,,ABC,ADC,.,ABC,CBE,180,,,ADC,CDF,180,,,CBE,CDF,.,【中考,恩施州】,如图,矩形,ABCD,的对角线,AC,,,BD,交于点,O,,且,DE,AC,,,AE,BD,,连接,OE,.,求证:,OE,AD,.,3,证明:,DE,AC,,,AE,BD,,,四边形,AODE,为平行四边形,四边形,ABCD,为矩形,,OA,OD,.,平行四边形,AODE,为菱形,OE,AD,.,如图,已知在,Rt,ABC,中,,ABC,90,,先把,ABC,绕点,B,顺时针旋转,90,至,DBE,,再把,ABC,沿射线,AB,平移至,FEG,,,DE,,,FG,相交于点,H,.,4,(1),判断线段,DE,,,FG,的位置关系,并说明理由;,解:,DE,FG,.,理由如下:,由题意,得,A,BDE,GFE,,,ABC,DBE,90,,,BDE,BED,90.,GFE,BED,90.,FHE,90,,即,DE,FG,.,(2),连接,CG,,求证:四边形,CBEG,是正方形,证明:,ABC,沿射线,AB,平移至,FEG,,,CB,GE,,,CB,GE,.,四边形,CBEG,是平行四边形,DBE,90,,,四边形,CBEG,是矩形,又易知,BC,BE,,,四边形,CBEG,是正方形,【中考,郴州】,如图,在菱形,ABCD,中,将对角线,AC,分别向两端延长到点,E,和,F,,使得,AE,CF,.,连接,DE,,,DF,,,BE,,,BF,.,求证:四边形,BEDF,是菱形,5,证明:方法一:,四边形,ABCD,为菱形,,AB,BC,CD,AD,,,DAC,DCA,BCA,BAC,,,EAD,EAB,FCD,FCB,,,易证得,ABE,,,ADE,,,BCF,,,DCF,全等,,DF,BF,BE,DE,,,四边形,BEDF,是菱形,方法二:,如图,连接,BD,交,AC,于点,O,.,四边形,ABCD,是菱形,,AC,BD,,,AO,CO,,,BO,DO,.,又,AE,CF,,,OE,OF,,,四边形,BEDF,是菱形,【中考,聊城】,如图,在,ABCD,中,,E,为,BC,的中点,连接,AE,并延长交,DC,的延长线于点,F,,连接,BF,,,AC,,若,AD,AF,,求证:四边形,ABFC,是矩形,6,证明:,四边形,ABCD,是平行四边形,,AD,BC,,,AB,CD,,,BAE,CFE,,,ABE,FCE,.,E,为,BC,的中点,,EB,EC,,,ABE,FCE,.,AB,CF,.,又,AB,CF,,,四边形,ABFC,是平行四边形,AD,BC,,,AD,AF,,,BC,AF,,,四边形,ABFC,是矩形,如图,,E,为正方形,ABCD,的边,AB,的延长线上一点,,DE,交,AC,于点,F,,交,BC,于点,G,,,H,为,GE,的中点,求证:,FB,BH,.,7,证明:,四边形,ABCD,是正方形,,CD,CB,,,DCF,BCF,45,,,CBE,180,90,90.,CF,CF,,,DCF,BCF,.,CDF,CBF,.,如图,在矩形,ABCD,中,,AB,10,,,BC,5,,点,E,,,F,分别在,AB,,,CD,上,将矩形,ABCD,沿,EF,折叠,使点,A,,,D,分别落在矩形,ABCD,外部的点,A,1,,,D,1,处,求阴影部分的周长,8,解:,在矩形,ABCD,中,,AB,10,,,BC,5,,,CD,AB,10,,,AD,BC,5.,由折叠可得,A,1,E,AE,,,A,1,D,1,AD,,,D,1,F,DF,.,设线段,D,1,F,与线段,AB,交于点,M,,则阴影部分的周长为,(,A,1,E,EM,MD,1,A,1,D,1,),(,MB,MF,FC,CB,),AE,EM,MD,1,AD,MB,MF,FC,CB,(,AE,EM,MB,),(,MD,1,MF,FC,),AD,CB,AB,(,FD,1,FC,),10,AB,(,FD,FC,),10,10,10,10,30.,如图,正方形,ABCD,的对角线相交于点,O,,点,O,也是正方形,A,B,C,O,的一个顶点,如果两个正方形的边长都等于,1,,那么正方形,A,B,C,O,绕顶点,O,转动,两个正方形重叠部分的面积大小有,什么规律?请说明理由,9,四边形,A,B,C,O,是正方形,,EOF,90.,EOF,BOC,.,EOF,BOF,BOC,BOF,,,即,BOE,COF,.,BOE,COF,.,S,BOE,S,COF,.,两个正方形重叠部分的面积等于,S,BOC,.,如图,在边长为,10,的菱形,ABCD,中,对角线,BD,16,,对角线,AC,,,BD,相交于点,G,,点,O,是直线,BD,上的动点,,OE,AB,于,E,,,OF,AD,于,F,.,10,(1),求对角线,AC,的长及菱形,ABCD,的面积,(2),如图,,当点,O,在对角线,BD,上运动时,,OE,OF,的值是否发生变化?请说明理由,(3),如图,,当点,O,在对角线,BD,的延长线上时,,OE,OF,的值是否发生变化?若不变,请说明理由;若变化,请探究,OE,,,OF,之间的数量关系,如图,在,ABC,中,,AB,AC,,点,O,在,ABC,的内部,,BOC,90,,,OB,OC,,,D,,,E,,,F,,,G,分别是,AB,,,OB,,,OC,,,AC,的中点,11,(1),求证:四边形,DEFG,是矩形;,证,明:如图,连接,AO,并延长交,BC,于,H,.,AB,AC,,,OB,OC,,,AH,垂直平分,BC,.,D,,,E,,,F,,,G,分别是,AB,,,OB,,,OC,,,AC,的中点,,DG,EF,BC,,,DE,AH,GF,.,四边形,DEFG,是平行四边形,EF,BC,,,AH,BC,,,AH,EF,.,又,DE,AH,,,EF,DE,,,DEF,90,,,四边形,DEFG,是矩形,(2),若,DE,2,,,EF,3,,求,ABC,的面积,如图,在四边形,ABCD,中,,C,90,,,ABD,CBD,,,AB,CB,,,P,是,BD,上一点,,PE,BC,,,PF,CD,,垂足分别为点,E,,,F,.,求证:,PA,EF,.,12,证明:如图,连接,PC,.,PE,BC,,,PF,CD,,,ECF,90,,,PEC,PFC,ECF,90,,,四边形,PECF,是矩形,PC,EF,.,13,运用,(1),如图,矩形,ONEF,的对角线相交于点,M,,,ON,,,OF,分别在,x,轴和,y,轴上,,O,为坐标原点,点,E,的坐标为,(4,,,3),,则点,M,的坐标为,_,;,(2,,,1.5),(2),在平面直角坐标系中,有,A,(,1,,,2),,,B,(3,,,1),,,C,(1,,,4),三点,另有一点,D,与点,A,,,B,,,C,构成平行四边形的顶点,求点,D,的坐标,解:,设点,D,的坐标为,(,x,,,y,),以点,A,,,B,,,C,,,D,为顶点构成的四边形是平行四边形,,A,(,1,,,2),,,B,(3,,,1),,,C,(1,,,4),,,
展开阅读全文