资源描述
15.2.3,整数指数幂,八年级 上册,正整数指数幂有以下运算性质:,(,6,),0,指数幂的运算,:,当,a0,时,,a,0,=1,。,复习,(,1,),同底数幂的乘法:,a,m,a,n,=,a,m+n,(a0 m,、,n,为正整数,),(,2,),幂的乘方:,(,a,m,),n,=,a,mn,(a0 m,、,n,为正整数,),(,3,),积的乘方:,(,ab),n,=,a,n,b,n,(a,,,b0 m,、,n,为正整数,),(,4,),同底数幂的除法:,a,m,a,n,=a,m-n,(,a0 m,、,n,为正整数且,mn,),(,5,),分式的乘方,:,(,b0,,,n,是正整数),a,m,a,n,=a,m-n,(a0 m,、,n,为正整数且,mn,),a,5,a,3,=a,2,a,3,a,5,=,?,分,析,a,3,a,5,=a,3-5,=a,-2,a,3,a,5,=,=,n,是正整数时,a,-n,属于分式。并且,(a0),例如,:,引入负整数指数幂后,指数的取值范围就扩大到全体整数。,a,m,=,a,m,(m,是正整数),1,(,m=0,),(,m,是负整数),这就是说:,a,-n,(a0),是,a,n,的倒数。,(,1,),3,2,=_,,,3,0,=_,,,3,-2,=_;,(,2,),(-3),2,=_,,,(-3),0,=_,,,(-3),-2,=,_,;,(,3,),b,2,=_,b,0,=_,b,-2,=_(b0).,练,习,9,1,9,1,b,2,1,a,3,a,-5,=,a,-3,a,-5,=,a,0,a,-5,=,a,-2,a,-8,a,-5,a,m,a,n,=,a,m+n,,这条性质对于,m,,,n,是任意整数的情形仍然适用。,归,纳,整数指数幂有以下运算性质:,(,1,),a,m,a,n,=,a,m+n,(a0),(,2,),(,a,m,),n,=,a,mn,(a0),(,3,),(,ab),n,=,a,n,b,n,(a,b0),(,4,),a,m,a,n,=a,m-n,(a0),(,5,)(,b0,),当,a0,时,,a,0,=1,。,(,6,),a,-3,a,-9,=,(a,-3,),2,=,(ab),-3,=,a,-3,a,-5,=,a,-12,a,-6,a,-3,b,-3,a,-3-(-5),=a,2,例题:,(1)(a,-1,b,2,),3,;,(2)a,-2,b,2,(a,2,b,-2,),-3,跟踪练习:,(1)x,2,y,-3,(x,-1,y),3,;,(2)(2ab,2,c,-3,),-2,(a,-2,b),3,(3)2a,-2,b,2,(2a,-1,b,-2,),-3,(3),小结,a,m,a,n,=,a,m+n,(,a,m,),n,=,a,mn,(,ab),n,=,a,n,b,n,运算法则,(,m,n,为,整数,a,0,b,0),a,0,=1,(a,0),规定,课后作业,基础题:,1.,计算:,(a+b),m+1,(a+b),n-1,;(2)(-a,2,b),2,(-a,2,b,3,),3,(-ab,4,),5,(3)(x,3,),2,(x,2,),4,x,0,(4)(-1.8x,4,y,2,z,3,)(-0.2x,2,y,4,z)(-1/3xyz),提高题:,2.,已知 ,求,a,51,a,8,的值;,3.,计算:,x,n+2,x,n-2,(x,2,),3n-3,;,4.,已知:,10,m,=5,10,n,=4,求,10,2m-3n,.,科学计数法,光速约为,310,8,米,/,秒,太阳半径约为,6.9610,5,千米,目前我国人口约为,6.110,9,小于,1,的数也可以用科学计数法表示。,a10,-n,a,是整数位只有一位的正数,,n,是正整数。,0.00001=10,-5,0.0000257=2.5710,-5,(1)0.005,0.005,0.005=5 10,-3,小,数点,原本的位置,小,数点,最,后,的位,置,小,数点,向右,移了,3,位,例,3,用科学记数法表示下列各数,:,(2)0.020 4,0.02 04,0.020 4=2.04,10,-2,小,数点,原本的位置,小,数点,最,后,的位置,小,数点,向右,移了,2,位,(3)0.000 36,0.000 36,0.000 36=3.6,10,-4,小,数点,原本的位置,小,数点,最,后,的位置,小,数点,向右,移了,4,位,对于一个小于,1,的正小数,如果小数点后至第一个非,0,数字前有,8,个,0,,用科学计数法表示这个数时,,10,的指数是多少?如果有,m,个,0,呢?,思,考,0.000 000 0027=_,,,0.000 000 32=_,,,0.000 000,001=_,,,m,个,0,2.710,-9,3.210,-7,10,-(m+1),1.,用科学计数法表示下列数:,0.000 000 001,,,0.001 2,,,0.000 000 345,,,-0.000 03,,,0.000 000 010 8 3780 000,1,纳米,=10,-9,1,亿,=10,8,课 堂 练 习,基础题,2.,计算:,(210,-6,)(3.210,3,);,(2)(210,-6,),2,(10,-4,),3,3.,(,提高题,)用科学计数法把,0.000009405,表示成,9.40510,n,,那么,n=_.,小,结,(,1,),n,是正整数时,a,-n,属于分式。并且,(a0),(,2,)科学计数法表示小于,1,的小数:,a10,-n,(,a,是整数位只有一位的正数,,n,是正整数。),
展开阅读全文