资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,1,、如果,ab,=c,(,a,、,b,、,c,都是,非,0,的自然数,)那么,a,和,b,就是,c,的因数,,c,就是,a,和,b,的倍数。因数和倍数两个不同的概念是,相互依存,的,,不能单独存在,。例如,43=12,,,12,是,4,的倍数,12,也是,3,的倍数,4,和,3,都是,12,的因数。,2,、,因数的特点,:一个数的因数的个数是,有限,的,其中,最小的因数是,1,,,最大的因数是它本身,。例:,10,的因数有,1,、,2,、,5,、,10,,其中最小的因数是,1,,最大的因数是,10,。(,1,是所有非,0,自然数的因数),3,、,倍数的特点,:一个数的倍数的个数是,无限,的,其中,最小的倍数是它本身,。例:,3,的倍数有:,3,、,6,、,9,、,12,其中最小的倍数是,3,,没有最大的倍数。,4,、,2,的倍数的特征,:个位上是,0,、,2,、,4,、,6,、,8,的数都是,2,的倍数,(,2,的倍数的数叫做,偶数、,不是,2,的倍数的数叫做,奇数),。,5,的倍数的特征,:个位上是,0,或,5,的数,都是,5,的倍数。,3,的倍数的特征,:一个数的各位上的数的和是,3,的倍数,这个数就是,3,的倍数。,13,倍数:,26,、,39,、,52,、,65,、,9117,倍数:,34,、,5111,倍数:,22,、,33,、,44,、,55,、,66,、,77,、,88,、,99,5,、,质数,:一个数,如果,只有,1,和它本身两个因数,,这样的数叫做质数(也叫素数)。如,2,,,3,,,5,,,7,都是质数。,合数,:一个数,如果,除了,1,和它本身还有别的因数,,这样的数叫做合数,如,4,、,6,、,8,、,9,、,12,都是合数。,1,既不是质数也不是合数。最小质数是,2,。最小合数是,4,。,6,、奇数,+,奇数偶数,偶数,+,偶数偶数,奇数,+,偶数,奇数,7,、最大公因数:几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数。,8,、求几个数的最大公因数的方法:(,1,)列举法;,(2),先找出两个数中较小数的因数,从中找出另一个数的因数;(,3,)短除法。,9,、互质数:公因数只有,1,的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:(,1,),1,和任何大于,1,的自然数互质。(,2,)相邻的两个自然数互质。(,3,)两个不同的质数互质。(,4,)一质一合(不成倍数关系)的两个数互质。(,5,)相邻两个奇数互质。(,6,),2,和任何奇数都是互质数。如果几个数中任意两个都互质,就说这几个数两两互质。,10,、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,;,其中最小的一个数,叫做最小公倍数。,11,、求两个数最小公倍数的方法:(,1,)列举法;(,2,)先找出较大数的倍数,圈出较小数的倍数,找出最小的一个;(,3,)分解质因数法;(,4,)短除法。,12,、如果两个数是互质数,它们的最大公因数就是,1,,最小公倍数是两者的积;如果两个数是倍数关系,它们的最大公因数是较小的数,最小公倍数是较大的数。例:,25,和,5,,,25,和,5,的最小公倍数是,25,,最大公因数是,5,。,13,、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。,
展开阅读全文