资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,梯形的中位线,光荣九年制学校宋雪琳,(一).复习引入,1.什么叫三角形中位线?三角形中位线有几条?,2.三角形中位线的性质?,(位置上与数量上与第三边有什么关系),试一试,:,如图所示的三角架,各横木之间互相平,行,且,PA=AE=BE,PD=DF=FC.,若,EF=40cm,则,AD=,cm.,想一想:,你会求,BC,的长吗?,P,A,E,B,C,D,F,20,梯形的中位线定义:,连结梯形两腰中点的线段叫做梯形的中位线。,理解梯形的中位线定义的两层含义,:,如果E、F分别为AB、DC的中点,,那么DE为梯形ABCD的,中位线,;,如果EF为梯形ABCD的中位线,,那么 点E、F分别为AB、DC的,中点,。,(二)新课讲解,梯形的中位线有几条?,只有一条,类比猜想,梯形中位线的性质:,梯形的中位线平行于两底,并且等于两底和的一半。,A,B,C,D,E,F,位置上:EF/BC/AD,数量上:EF=,(AD+BC),已知:梯形,ABCD,中,,ADBC,AE=BE,DF=CF,求证,:EFBC,EF=,(AD+BC),A,B,C,D,E,F,G,图,1,证明,:,连结AF并延长交BC延长线于G,AD BC,DAG=CGF,ADF=GCF,又DF=CF,ADF GCF(AAS),AD=CG,AF=FG,AE=EB,EFBG EF=,BG,AD BC,EF AD BC,BG=BC+CG,BG=BC+AD,EF=,(AD+BC),试一试,:,如图所示的三角架,各横木之间互相平,行,且,PA=AE=BE,PD=DF=FC.,若,EF=40cm,则,AD=,cm.,想一想:,你会求,BC,的长吗?,P,A,E,B,C,D,F,20,练一练:,1.(1)梯形的上底长4cm,下底长6cm,则,中位线长,cm.,(2)梯形上底长6cm,中位线长8cm,则下,底长,cm.,(3)等腰梯形的,中位线长6cm,腰长5cm,则梯形的周长是,cm.,(,4,)梯形的上下底长之比为2:3,中位线长,为5cm,则下底长为_cm.,(,5,)若梯形的中位线长6cm,高为5cm,你会求梯形的面积吗?,例,1.,如图所示的梯形梯子,,AAEE,,,AB=BC=CD=DE,,,AB=BC=,CD=DE,,,AA=40cm,,,EE,80cm.,求,:BB,、,CC,、,DD.,A,E,A,E,B,C,D,B,C,D,例2.如图,在梯形,ABCD,中,ADBC,中位线,EF,与对角线,AC、BD,交于,N、M,两点,若,AD,=,6,cm,BC,=,10,cm,求,MN,的长,A,B,E,F,M,N,F,D,C,课堂小结,1.,梯形中位线的定义及性质,2.,梯形中位线的应用,思考:,如图,梯形ABCD中,AD,BC,E是腰AB的中,点,且DECE.你能说明 DC=AD+CB吗?,试试看.,A,B,C,D,E,
展开阅读全文