资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第四章 存储器管理,4.3 连续分配方式,连续分配方式,是指为一个用户程序分配一个连续的内存空间。可分为单一连续分配、固定分区分配、动态分区分配以及动态重定位分配四种方式。,单一连续分配,这是最简单的一种存储管理方式,但只能用于单用户、单任务的操作系统中。采用这种存储管理方式时,可把内存分为系统区和用户区两部分,系统区仅提供给OS使用,通常是放在内存的低址部分;用户区是指除系统区以外的全部内存空间,提供给用户使用。,固定分区分配,固定分区式分配是最简单的一种可运行多道程序的存储管理方式。这是将内存用户空间划分为若干个固定大小的区域,在每个分区中只装入一道作业,这样,把用户空间划分为几个分区,便允许有几道作业并发允许。当有一空闲分区时,便可以再从外存的后备作业队列中选择一个适当大小的作业装入该分区,当该作业结束时,又可再从后备作业队列中找出另一作业调入该分区。,划分分区的方法,可用下述两种方法将内存的用户空间划分为若干个固定大小的分区:,(1),分区大小相等,即使所有的内存分区大小相等。其缺点是缺乏灵活性,即当程序太小时,会造成内存空间的浪费;当程序太大时,一个分区又不足以装入该程序,致使该程序无法运行。,(2),分区大小不等。为了克服分区大小相等而缺乏灵活性的这个缺点,可把内存区划分成含有多个较小的分区、适量的中等分区及少量的大分区。这样,便可根据程序的大小为之分配适当的分区。,内存分配,为了便于内存分配,通常将分区按大小进行排队,并为之建立一张分区使用表,其中各表项包括每个分区的起始地址、大小及状态,(,是否已分配,),,见图,4-5(a),所示。当有一用户程序要装入时,由内存分配程序检索该表,从中找出一个能满足要求的、尚未分配的分区,将之分配给该程序,然后将该表项中的状态置为“已分配”;若未找到大小足够的分区,则拒绝为该用户程序分配内存。存储空间分配情况如图,4-5(b),所示。,图 4-5固定分区使用表,动态分区分配,动态分配时根据进程的实际需要,动态地为之分配空间。在实现可变分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配与回收操作这样三个问题。,分区分配中的数据结构,为了实现分区分配,系统中必须配置相应的数据结构,用来描述空闲分区和已分配分区的情况,为分配提供依据。常用的数据结构有以下两种形式:,(1),空闲分区表。在系统中设置一张空闲分区表,用于记录每个空闲分区的情况。每个空闲分区占一个表目,表目中包括分区序号、分区始址及分区的大小等数据项。,(2)空闲分区链。为了实现对空闲分区的分配和链接,在每个分区的起始部分,设置一些用于控制分区分配的信息,以及用于链接各分区所用的前向指针;在分区尾部则设置一后向指针,通过前、后向链接指针,可将所有的空闲分区链接成一个双向链。,图4-6空闲链结构,分区分配算法,1),首次适应算法,(first fit),FF,算法要求空闲分区链以地址递增的次序链接。在分配内存时,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止;然后再按照作业的大小,从该分区中划出一块内存空间分配给请求者,余下的空闲分区仍留在空闲链中。若从链首直至链尾都不能找到一个能满足要求的分区,则此次内存分配失败,返回。该算法倾向于优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区。这给为以后到达的大作业分配大的内存空间创造了条件。其缺点是低址部分不断被划分,会留下许多难以利用的、很小的空闲分区,而每次查找又都是从低址部分开始,这无疑会增加查找可用空闲分区时的开销。,56 18 32,0,56,74,106,2)循环首次适应算法(next fit),该算法是由首次适应算法演变而成的。在为进程分配内存空间时,不再是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业。为实现该算法,应设置一起始查寻指针,用于指示下一次起始查寻的空闲分区,并采用循环查找方式,即如果最后一个(链尾)空闲分区的大小仍不能满足要求,则应返回到第一个空闲分区,比较其大小是否满足要求。找到后,应调整起始查寻指针。该算法能使内存中的空闲分区分布得更均匀,从而减少了查找空闲分区时的开销,但这样会缺乏大的空闲分区。,3)最佳适应算法(best fit),所谓“最佳”是指每次为作业分配内存时,总是把能满足要求、又是最小的空闲分区分配给作业,避免“大材小用”。为了加速寻找,该算法要求将所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。这样,第一次找到的能满足要求的空闲区,必然是最佳的。孤立地看,最佳适应算法似乎是最佳的,然而在宏观上却不一定。因为每次分配后所切割下来的剩余部分总是最小的,这样,在存储器中会留下许多难以利用的小空闲区。,4)最坏适应算法(worst fit),最坏适应分配算法要扫描整个空闲分区表或链表,总是挑选一个最大的空闲区分割给作业使用,其优点是可使剩下的空闲区不至于太小,产生碎片的几率最小,对中、小作业有利,同时最坏适应分配算法查找效率很高。该算法要求将所有的空闲分区按其容量以从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。但是该算法的缺点也是明显的,它会使存储器中缺乏大的空闲分区。最坏适应算法与前面所述的首次适应算法、循环首次适应算法、最佳适应算法一起,也称为顺序搜索法。,5)快速适应算法(quick fit),该算法又称为分类搜索法,是将空闲分区根据其容量大小进行分类,对于每一类具有相同容量的所有空闲分区,单独设立一个空闲分区链表,这样,系统中存在多个空闲分区链表,同时在内存中设立一张管理索引表,该表的每一个表项对应了一种空闲分区类型,并记录了该类型空闲分区链表表头的指针。空闲分区的分类是根据进程常用的空间大小进行划分,如2 KB、4 KB、8 KB等,对于其它大小的分区,如7 KB这样的空闲区,既可以放在8 KB的链表中,也可以放在一个特殊的空闲区链表中。,该算法的优点是查找效率高,仅需要根据进程的长度,寻找到能容纳它的最小空闲区链表,并取下第一块进行分配即可。另外该算法在进行空闲分区分配时,不会对任何分区产生分割,所以能保留大的分区,满足对大空间的需求,也不会产生内存碎片。,该算法的缺点是在分区归还主存时算法复杂,系统开销较大。此外,该算法在分配空闲分区时是以进程为单位,一个分区只属于一个进程,因此在为进程所分配的一个分区中,或多或少地存在一定的浪费。空闲分区划分越细,浪费则越严重,整体上会造成可观的存储空间浪费,这是典型的以空间换时间的作法。,分区分配操作,1),分配内存,系统应利用某种分配算法,从空闲分区链,(,表,),中找到所需大小的分区。设请求的分区大小为,u.size,,表中每个空闲分区的大小可表示为,m.size,。若,m.size-u.sizesize(size,是事先规定的不再切割的剩余分区的大小,),,说明多余部分太小,可不再切割,将整个分区分配给请求者;否则,(,即多余部分超过,size),,从该分区中按请求的大小划分出一块内存空间分配出去,余下的部分仍留在空闲分区链,(,表,),中。然后,将分配区的首址返回给调用者。,图 4-7内存分配流程,2)回收内存,当进程运行完毕释放内存时,系统根据回收区的首址,从空闲区链(表)中找到相应的插入点,此时可能出现以下四种情况之一:,(1)回收区与插入点的前一个空闲分区F1相邻接,见图4-8(a)。此时应将回收区与插入点的前一分区合并,不必为回收分区分配新表项,而只需修改其前一分区F1的大小。,(2)回收分区与插入点的后一空闲分区F2相邻接,见图4-8(b)。此时也可将两分区合并,形成新的空闲分区,但用回收区的首址作为新空闲区的首址,大小为两者之和。,图 4-8内存回收时的情况,(3)回收区同时与插入点的前、后两个分区邻接,见图4-8(c)。此时将三个分区合并,使用F1的表项和F1的首址,取消F2的表项,大小为三者之和。,(4)回收区既不与F1邻接,又不与F2邻接。这时应为回收区单独建立一新表项,填写回收区的首址和大小,并根据其首址插入到空闲链中的适当位置。,伙伴系统,固定分区和动态分区方式都有不足之处。固定分区方式限制了活动进程的数目,当进程大小与空闲分区大小不匹配时,内存空间利用率很低。动态分区方式算法复杂,回收空闲分区时需要进行分区合并等,系统开销较大。伙伴系统方式是对以上两种内存方式的一种折衷方案。,伙伴系统规定,无论已分配分区或空闲分区,其大小均为2的,k,次幂,,k,为整数,l,k,m,,其中:2,1,表示分配的最小分区的大小,2,m,表示分配的最大分区的大小,通常2,m,是整个可分配内存的大小。,需要指出的是,在当前的操作系统中,普遍采用的是下面将要讲述的基于分页和分段机制的虚拟内存机制,该机制较伙伴算法更为合理和高效,但在多处理机系统中,伙伴系统仍不失为一种有效的内存分配和释放的方法,得到了大量的应用。,哈希算法,在上述的分类搜索算法和伙伴系统算法中,都是将空闲分区根据分区大小进行分类,对于每一类具有相同大小的空闲分区,单独设立一个空闲分区链表。在为进程分配空间时,需要在一张管理索引表中查找到所需空间大小所对应的表项,从中得到对应的空闲分区链表表头指针,从而通过查找得到一个空闲分区。如果对空闲分区分类较细,则相应的空闲分区链表也较多,因此选择合适的空闲链表的开销也相应增加,且时间性能降低。,哈希算法就是利用哈希快速查找的优点,以及空闲分区在可利用空间表中的分布规律,建立哈希函数,构造一张以空闲分区大小为关键字的哈希表,该表的每一个表项记录了一个对应的空闲分区链表表头指针。,当进行空闲分区分配时,根据所需空闲分区大小,通过哈希函数计算,即得到在哈希表中的位置,从中得到相应的空闲分区链表,实现最佳分配策略。,可重定位分区分配,动态重定位的引入,在连续分配方式中,必须把一个系统或用户程序装入一连续的内存空间。如果在系统中只有若干个小的分区,即使它们容量的总和大于要装入的程序,但由于这些分区不相邻接,也无法把该程序装入内存。例如,图,4-9(a),中示出了在内存中现有四个互不邻接的小分区,它们的容量分别为,10 KB,、,30 KB,、,14 KB,和,26 KB,,其总容量是,80 KB,。但如果现在有一作业到达,要求获得,40 KB,的内存空间,由于必须为它分配一连续空间,故此作业无法装入。这种不能被利用的小分区称为“零头”或“碎片”。,图4-9 紧凑的示意,若想把作业装入,可采用的一种方法是:将内存中的所有作业进行移动,使它们全都相邻接,这样,即可把原来分散的多个小分区拼接成一个大分区,这时就可把作业装入该区。这种通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑”,见图4-9(b)。由于经过紧凑后的某些用户程序在内存中的位置发生了变化,此时若不对程序和数据的地址加以修改(变换),则程序必将无法执行。为此,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位。,动态重定位的实现,在动态运行时装入的方式中,作业装入内存后的所有地址都仍然是相对地址,将相对地址转换为物理地址的工作,被推迟到程序指令要真正执行时进行。为使地址的转换不会影响到指令的执行速度,必须有硬件地址变换机构的支持,即须在系统中增设一个重定位寄存器,用它来存放程序,(,数据,),在内存中的起始地址。程序在执行时,真正访问的内存地址是相对地址与重定位寄存器中的地址相加而形成的。地址变换过程是在程序执行期间,随着对每条指令或数据的访问自动进行的,故称为动态重定位。当系统对内存进行了“紧凑”而使若干程序从内存的某处移至另一处时,不需对程序做任何修改,只要用该程序在内存的新起始地址,去置换原来的起始地址即可。,图 4-10动态重定位示意图,动态重定位分区分配算法,动态重定位分区分配算法与动
展开阅读全文