八年级轴对称图形复习

上传人:xian****hua 文档编号:245180952 上传时间:2024-10-07 格式:PPT 页数:33 大小:250KB
返回 下载 相关 举报
八年级轴对称图形复习_第1页
第1页 / 共33页
八年级轴对称图形复习_第2页
第2页 / 共33页
八年级轴对称图形复习_第3页
第3页 / 共33页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第十四章,轴对称图形复习课,如皋市新民初中,初二数学备课组,更多资源,一、知识概况,本章着重研究轴对称的概念,性质,轴对称的作图,应用,以及轴对称图形和几个常见的轴对称图形的性质和判定。,如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这,两个图形,关于这条直线,成轴对称,,这条直线叫做对称轴,两个图形中的对应点叫做对称点。,如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么,这个图形,叫做,轴对称图形,,这条直线叫做对称轴。,(一)轴对称和轴对称图形,1、概念,2、轴对称的性质:,成轴对称的两个图形全等;如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。,(二)几个轴对称图形的性质:,1、线段、射线、直线。,线段是轴对称图形,它有两条对称轴,它的对称轴是它所在的直线,和线段的垂直平分线。,线段垂直平分线上的点到线段两端的距离相等;到线段两端的距离相等的点在线段的垂直平分线上。,2、角:,角是轴对称图形,它的对称轴是它的角平分线所在的直线。,角平分线上的点到角的两边的距离相等;到角的两边的距离相等的点在这个角的平分线上。,3、等腰三角形等边三角形,4、等腰梯形,从对称的角度理解等腰三角形和等腰梯形的性质和识别方法。,5、正多边形,6、圆,二、重、难点剖析,1、轴对称和轴对称图形的区别和联系。,区别:,轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。对称轴只有一条。,轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。对称轴可能会有多条。,联系:,两部分都完全重合,都有对称轴,都有对称点。,如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。,2、轴对称的性质和几个简单的轴对称图形的性质,是这部分的重点知识,应引起足够的重视。,3、轴对称的实际应用应提高到足够的地位。,4、用对称的眼光看问题,解决问题,指导辅助线的添加。,例1:如图,如果ACD的周长为17cm,ABC的周长为25cm,根据这些条件,你可以求出哪条线段的长?,思路点拨,:,(1),ACD的周长AD CDAC17;,(2)ABC的周长ABACBC25;,(3)由DE是BC的垂直平分线得:BDCD;所以ADCD ADBDAB。,(4)由(2)(1)得BC8cm.,讲练平台,小结点评,:,(2)当条件中有线段的垂直平分线时,要主动去寻找相等线段。,(1)分析题意时,要将复杂条件简单化、具体化。,例2:如图,AD是ABC的中线,ADC60,把ADC沿直线AD折过来,C落在C的位置,,(1)在图中找出点C,连结BC;,(2)如果BC4,求BC的长。,思路点拨,:,由于翻折后的图形与翻折前的图形关于折痕对称;所以C、C关于直线AD对称,AD垂直平分CC,,C,又处于对称位置的元素(线段、角)对应相等,这为问题解决提供了条件。,C,解:,(1)画CO垂直AB,并延长到C,使得OCOC,点C即为所求。,O,(2)连结CD,由对称性得CDCD,CDACDA60;所以BDC60,,所以,,CBD,是等边三角形,,所以,,BCBD2。,C,小结点评,:,1、翻折变换后得到的图形与原图形关于折痕对称;对应点的连线段被折痕垂直平分;,2、解决翻折问题,要注意隐含在图形中的相等线段、相等角,全等三角形;因为一切处于对称位置的线段相等,角相等,三角形全等。,3、从对称角度完善图形,让隐含条件显现出来,这是这部分题目添加辅助线的一个重要规律。,练习1将一正方形纸片按图中、的方式依次对折后,再沿中的虚线裁剪,最后将中的纸片打开铺平,所得图案应该是下面图案中的(),课堂练习,A B C D,小结点评:,这类问题主要训练空间想象能力。我们可以实际操作,也可以倒推,还可以在头脑中进行思维实验,不过后者能力的要求比较高。,例3如图,ABC和ABC关于直线MN对称,,ABC,和,ABC,关于直线,EF,对称。,(1)画出直线EF;,思路点拨,:,由于连结对称点的线段被对称轴垂直平分,所以连结对称点的线段,作其垂直平分线,即为两个图形的对称轴。,(2)直线MN与EF相交于点O,试探究BOB与直线MN、EF所夹锐角的数量关系。,思路点拨,:,O,E,F,从对称角度来看,连结OB、OB”的对称线段OB,可以得到两组角相等,问题容易得到解决。,结BO。,ABC和ABC关于MN对称,,BOM=BOM,又ABC和ABC关于EF对称,,BOEBOE。,BOB=BOM+BOM+BOE+BOE,=2(BOMBOE)2。,即BOB2,解,:(1),如图,连结BB。,作线段BB的垂直平分线EF。,则直线EF是ABC和ABC的对称轴。,O,E,F,小结点评:,(1)作两个成对称图形的对称轴,只需将对称点的垂直平分线作出即可。,(2)成轴对称的两个图形的对应元素相等是解题的关键。,(3)补全对称图形中所缺的部分,是添加辅助线的重要思考方向。,例4:如下图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:,小结点评:,设计图案问题,要注意设计的要求,注意从多个角度思考问题,本题中的对称轴的位置可以是水平的,也可以是竖直的,还可以是斜的,特别是后者,我们常常容易忽视。,做完这类题目,还要注意检验,看是否符合题目的全部要求。,练习2如图,在一个规格为48的球台上,有两个小球P和Q。若击打小球P经过球台的边AB反弹后,恰好击中小球Q,则小球P击出时,应瞄准AB边上的(),A、O,1,点 B、O,2,点,C、O,3,点 D、O,4,点,B,例5、已知:如图,CD是RtABC斜边上的高,A的平分线AE交CD于点F。求证:CECF。,更多资源,思路点拨,:,思路1:,(1)从结论出发:,要得到CECF,只要有CEFCFE;,(2)从条件出发:,条件有:CAFBAF;,CDAB;,ACB90。,(3)从图形出发:,CAFBAF,ACDB,CDAB,ACB90,CAFACDBAFB,CEFCFE,CECF,思路2:,因为图形中有角平分线,且FCAC,考虑用角平分线的性质,补全所缺的部分,过F作FGAB。,小结点评:,1、对于复杂的推理问题,学会分析方法很重要。一般可以从结论出发倒推(分析法),可以从条件出发顺推(综合法),也可以从两头同时出发(两头凑)寻找解题途径。,2、分析图形,是解题的关键。其实质是分解图形,重新组合图形,挖掘图形和题目中的隐含条件。,自主探究,享受学习,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!