资源描述
综合检测二 第二十七章(相似),九年级数学下册人教版,一、选择题,(,每小题,3,分,,,共,30,分,),1,.,(2019,贵阳期末,),观察下列每组图形,,,相似图形是,(,),C,2,.,下列四条线段中,,,不是成比例线段的为,(,),A,.,a,3,,,b,6,,,c,2,,,d,4 B.,a,4,,,b,6,,,c,5,,,d,10,C,.,a,1,,,b,,,c,,,d,D.,a,2,,,b,,,c,,,d,2,B,3,.,如图,,,已知,ABC,DEF,,,AB,DE,1,2,,,则下列等式一定成立的是,(,),A.,B.,C.,D.,D,4,.,如图,,,四边形,ABCD,四边形,A,1,B,1,C,1,D,1,,,AB,12,,,CD,15,,,A,1,B,1,9,,,则边,C,1,D,1,的长是,(,),A,.,10 B.12 C.,D.,C,5,.,(2018,乐山,),如图,,,DE,FG,BC,,,若,DB,4,FB,,,则,EG,与,GC,的关系是,(,),A,.,EG,4,GC,B.,EG,3,GC,C.,EG,GC,D.,EG,2,GC,B,6,.,如图,,,一架投影机插入胶片后图像可投到屏幕上,.,已知胶片与屏幕平行,,,点,A,为光源,,,与胶片,BC,的距离为,0.1,米,,,胶片的高,BC,为,0.038,米,.,若需要投影后的图像,DE,高,1.9,米,,,则投影机光源离屏幕大约为,(,),A,.,6,米,B.5,米,C.4,米,D.3,米,B,7,.,(2019,连云港,),在如图所示的象棋盘,(,各个小正方形的边长均相等,),中,,,根据“马走日”的规则,,,“马”应落在下列哪个位置处,,,能使“马”“车”“炮”所在位置的格点构成的三角形与“帅”“相”“兵”所在位置的格点构成的三角形相似,(,),A,.,处,B.,处,C.,处,D.,处,B,8,.,(2019,玉林,),如图,,,AB,EF,DC,,,AD,BC,,,EF,与,AC,交于点,G,,,则相似三角形共有,(,),A,.,3,对,B.5,对,C.6,对,D.8,对,C,9,.,(2019,海南,),如图,,,在,Rt,ABC,中,,,C,90,,,AB,5,,,BC,4.,P,是边,AC,上一动点,,,过点,P,作,PQ,AB,交,BC,于点,Q,,,D,为线段,PQ,的中点,.,当,BD,平分,ABC,时,,,AP,的长度为,(,),A.,B.,C.,D.,B,10,.,(2019,常德,),如图,,,在等腰,ABC,中,,,AB,AC,,,图中所有三角形均相似,,,其中最小的三角形面积为,1,,,ABC,的面积为,42,,,则四边形,DBCE,的面积为,(,),A,.,20 B.22 C.24 D.26,D,二、填空题,(,每小题,3,分,,,共,24,分,),11,.,(2018,云南,),如图,,,已知,AB,CD,,,若 ,,,则,_.,12,.,如图,,,OAB,与,OCD,是以点,O,为位似中心的位似图形,,,相似比为,3,4.,若点,B,的坐标是,(6,,,0),,,则点,D,的坐标是,_.,(8,,,0,),13,.,如图,,,在,ABC,中,,,D,,,E,分别是边,AC,,,AB,上的点,,,且,AD,2,,,DC,4,,,AE,3,,,EB,1,,,则 ,_.,14,.,如图,,,A,B,C,是,ABC,以点,O,为位似中心经过位似变换得到的,,,若,ABC,与,A,B,C,的面积比是,16,9,,,则,OA,OA,_.,43,15,.,某校九年级的,4,位同学借助三根木棍和皮尺测量校园内旗杆的高度,,,为了方便操作和观察,,,他们用三根木棍围成直角三角形并放在高,1,m,的桌子上,,,且使旗杆的顶端和直角三角形的斜边在同一直线上,(,如图,).,经测量,,,木棍围成的直角三角形的两直角边,AB,,,OA,的长分别为,0.7,m,,,0.3,m,,,观测点,O,到旗杆的距离,OE,为,6,m,,,则旗杆,MN,的高度为,_,m,.,15,16,.,(2018,北京,),如图,,,在矩形,ABCD,中,,,E,是边,AB,的中点,,,连接,DE,交对角线,AC,于点,F,.,若,AB,4,,,AD,3,,,则,CF,的长为,_.,17,.,如图,,,在,ABC,中,,,AB,AC,12,,,BC,8.,正方形,DEFG,的顶点,E,,,F,在,ABC,内,,,顶点,D,,,G,分别在,AB,,,AC,上,,,AD,AG,,,DG,4,,,则点,F,到,BC,的距离为,_.,18,.,如图,,,在矩形,ABCD,中,,,ADC,的平分线与,AB,交于点,E,,,点,F,在,DE,的延长线上,,,BFE,90,,,连接,AF,,,CF,,,CF,与,AB,交于点,G,.,有以下结论:,AE,BC,;,AF,CF,;,BF,2,FG,FC,;,EG,AE,BG,A,B,.,其中正确结论的个数是,_,个,.,3,三、解答题,(,共,66,分,),19,.,(8,分,),如图,,,在,ABC,中,,,DE,BC,,,AD,6.4 cm,,,DB,4.8 cm,,,EC,4.2 cm,,,求,AC,的长,.,解:,DE,BC,,,,,,,AE,5.6 cm,,,AC,AE,EC,5.6,4.2,9.8,(,cm,),.,20,.,(8,分,),如图,,,在边长均为,1,的小正方形网格纸中,,,OAB,的顶点,O,,,A,,,B,均在格点上,,,且,O,是直角坐标系的原点,,,点,A,在,x,轴上,.,(1),以,O,为位似中心,,,将,OAB,放大,,,使得放大后的,OA,1,B,1,与,OAB,对应线段的比为,2,1,,,画出,OA,1,B,1,(,所画,OA,1,B,1,与,OAB,在原点两侧,),;,(2),分别写出点,A,1,,,B,1,的坐标,.,解:,(1),如图所示,.,(2),点,A,1,的坐标是,(4,,,0,),,,点,B,1,的坐标是,(2,,,4),.,21,.,(8,分,),如图,,,E,是,ABCD,的边,BC,延长线上一点,,,AE,交,CD,于点,F,,,FG,AD,交,AB,于点,G,.,(1),图中与,CEF,相似的三角形有,_,;,(,写出图中与,CEF,相似的所有三角形,),(2),从,(1),中选出一个三角形,,,并证明它与,CEF,相似,.,ADF,,,ABE,,,A,FG,22,.,(10,分,),如图,,,身高,1.5,m,的人站在离河边,3,m,处时,,,恰好能看到对岸电线杆在水中的全部倒影,,,若河岸高出水面的高度,ED,为,0.75,m,,,电线杆的高度,GM,为,4.5,m,,,求河宽,.,解:,AB,DE,MK,,,ACF,DEF,KMF,,,,,.,由题意,,,得,AB,1.5 m,,,CE,3 m,,,BC,DE,0.75 m,,,KM,GM,4.5 m,,,AC,AB,BC,2.25 m,,,,,.,设,EF,x,m,,,则,MF,6,x,m.,由,2,CF,MF,,,得,2(,x,3),6,x,,,解得,x,1.5,,,EF,1.5 m,,,MF,9 m,,,EM,EF,MF,1.5,9,10.5,(,m,),.,答:河宽为,10.5 m.,23,.,(10,分,)(2018,福建,),如图,,,在,Rt,ABC,中,,,C,90,,,AB,10,,,AC,8.,线段,AD,由线段,AB,绕点,A,按逆时针方向旋转,90,得到,,,EFG,由,ABC,沿,CB,方向平移得到,,,且直线,EF,过点,D,.,(1),求,BDF,的大小;,(2),求,CG,的长,.,解:,(1),线段,AD,由线段,AB,绕点,A,按逆时针方向旋转,90,得到,,,DAB,90,,,AD,AB,10,,,ABD,45,.,EFG,由,ABC,沿,CB,方向平移得到,,,AB,EF,,,BDF,ABD,45,.,(2),由平移的性质得,EFG,ABC,,,AE,CG,,,AB,EF,,,DEA,DFC,ABC,,,ADE,DAB,180,.,DAB,90,,,ADE,90,.,C,90,,,ADE,C,,,ADE,ACB,,,.,AC,8,,,AB,AD,10,,,AE,12.5.,由平移的性质得,CG,AE,12.5.,24.,(10,分,)(2018,衢州,),如图,,,已知,AB,是,O,的直径,,,AC,是,O,的切线,,,连接,BC,交,O,于点,F,,,取 的中点,D,,,连接,AD,交,BC,于点,E,,,过点,E,作,EH,AB,于点,H,.,(1),求证:,HBE,ABC,;,(2),若,CF,4,,,BF,5,,,求,AC,和,EH,的长,.,(1),证明:,AC,是,O,的切线,,,CA,AB,.,EH,AB,,,EHB,CAB,.,EBH,CBA,,,HBE,ABC,.,(2),解:连接,AF,.,AB,是,O,的直径,,,AFB,90,,,AFC,90,CAB,.,又,C,C,,,CAF,CBA,,,,,AC,2,CF,BC,.,CF,4,,,BF,5,,,BC,CF,BF,9,,,AC, ,6,,,AB,,,AF,.,,,EAF,EAH,.,EF,AF,,,EH,AB,,,EF,EH,.,又,AE,AE,,,Rt,AEF,Rt,AEH,,,AH,AF,2,,,BH,AB,AH,.,设,EF,EH,x,,,则,BE,BF,EF,5,x,.,在,Rt,EH,B,中,,,BE,2,EH,2,BH,2,,,即,(5,x,),2,x,2,( ),2,,,解得,x,2,,,EH,2.,25,.,(12,分,),如图,1,,,在,ABC,中,,,点,O,是,AC,上一点,,,过点,O,的直线与,AB,,,BC,的延长线分别相交于点,M,,,N,.,【,问题引入,】,(1),若点,O,是,AC,的中点,,,1,,,求 的值;,(,思路提示:过点,A,作,MN,的平行线交,BN,的延长线于点,G,),(1),解:过点,A,作,AG,MN,交,BN,的延长线于点,G,.,AG,MN,,,O,为,AC,的中点,,,AO,CO,,,NG,CN,,,.,【,探索研究,】,(2),若点,O,是,AC,上任意一点,(,不与点,A,,,C,重合,),,,求证:, ,1,;,(2),证明:由,(1),知,, ,,.,【,拓展应用,】,(3),如图,2,,,点,P,是,ABC,内任意一点,,,射线,AP,,,BP,,,CP,分别交,BC,,,AC,,,AB,于点,D,,,E,,,F,.,若 ,,,,,求 的值,.,(3),解:在,ABD,中,,,点,P,是,AD,上的点,,,过点,P,的直线与,AB,,,BD,的延长线分别相交于点,F,,,C,,,由,(2),得,.,在,ACD,中,,,点,P,是,AD,上一点,,,过点,P,的直线与,AC,,,CD,的延长线分别相交于点,E,,,B,,,由,(2),得,,,,,.,
展开阅读全文