辐射剂量与防护(final)

上传人:dja****22 文档编号:243438607 上传时间:2024-09-23 格式:PPT 页数:85 大小:1.63MB
返回 下载 相关 举报
辐射剂量与防护(final)_第1页
第1页 / 共85页
辐射剂量与防护(final)_第2页
第2页 / 共85页
辐射剂量与防护(final)_第3页
第3页 / 共85页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,电离辐射剂量与防护,系馆315 Tel: 8281887,E-mail:,1,电离辐射剂量学:,研究电离辐射能量在物质中的转移和沉积的规律,特别是转移和沉积的度量(量的定义、测量、计算等)的科学。,剂量计算或测量两种基本途径:,(1)辐射场本身测量辐射场粒子数、辐射的能谱分布、辐射能量沉积本领,(2)直接或间接测量沉积能量,2,第一章回顾,1、辐射的分类,i.电离辐射:,通过初级和次级过程引起物质电离,如粒子、粒子、质子、中子、X射线和 射线等。,ii.非电离辐射:,与物质作用不产生电离的辐射,如微波、无线电波、红外线等。,3,2、辐射场的描述,粒子注量定义:,单向辐射场:粒子注量,,数值上等于通过与粒子入射方向垂直的单位面积的粒子数。,da,da,4,da,= dacos,定义:,u,=dN/,da,为单向辐射场的粒子注量。,一般情况:各向辐射场,定义:Particle fluence (粒子注量),:,=dN/da,,m,-2,Energy fluence(能量注量),:,=dR/da,,j.m,-2,P,da,5,按能谱分布:,能量注量:,能量注量与粒子注量的关系,6,3.角分布和辐射度,Angular distribution,(角分布):描述粒子入射方向的分布。,7,辐射度谱分布,p,E,J,(r)能揭示辐射场的最详尽的内涵,是完整的描述辐射场的一个辐射学量。,8,对某种特定类型辐射:,P 粒子辐射度,p,E,辐射度的谱分布,r 能量辐射度,r,E,能量辐射度的谱分布,9,注量与径迹长度的关系,粒子注量,等于单位体积内的径迹总长度。,da,s,V,证明:,对于足够小的任意形状的体,积元, p,E,均匀、径迹可视为直线,切穿过体积元。则,dL=(,da) s,=,(das ),=,dV,L,=,V,L=,V,=,L/,V,=dL/dV,10,3、相互作用系数,A、带电粒子(e、,、重带电粒子),总阻止本领:,总线阻止本领带电粒子通过物质时在单位路程上损失的能量。, dE是dl距离上损失能量的数学期望值。,总线阻止本领与,带电粒子的性质(电荷、质量、能量)和物质的性质(原子序数、密度)有关。去除物质密度的影响可得到总质量阻止本领公式:,11,总质量阻止本领,描述带电粒子在物质中穿过单位路程时,因各种相互作用而损失的能量。它可分解为各种相互作用阻止本领之和。,质量辐射阻止本领(由非弹性辐射相互作用导致的初级带电粒子的能量损失决定),质量碰撞阻止本领(,包括电离和激发对能量损失的贡献),12,定限碰撞阻止本领(L,/,),(1),粒子,粒子定义:能够产生分支径迹的次级电子,(2) L,/,定义:L,/,=(dE/dl),/,dE为带电粒子在密度为,的介质中穿行距离为dl时,由传递能量小于指定值的碰撞而损失的能量的数学期望值。,L,称为传能线密度LET(Linear energy transfer)。,LET:特定能量的带电粒子在介质中穿行单位长度路程时,由能量转移小于某一指定值的历次碰撞所造成的平均能量损失。,L,=S,c,, L,/,=(S/ ),c,13,连续慢化近似射程,穿过厚度为x的吸收层的粒子数为N(x),则平均投影射程可写为:,连续慢化近似射程r,0,假设带电粒子与物质的每次相互作用损失的能量足够小,以致于可以把带电粒子损失能量的过程看成是连续慢化过程,则初始能量E的带电粒子在介质中穿行路程质量厚度的期望值可表示为:,r,0,R,14,X、,射线,与物质作用类型:,光电效应,康普顿效应,电子对生成,5MeV, r=1mm 栅元0.21mm,2,5MeV,n r=1mm 栅元0.21mm,2,笔形束辐射在水模中的纵向能量沉积,15,中子与物质相互作用类型:,弹性散射,(Elastic-scattering):总动能守恒。,非弹性散射,(In-elastic scattering):总能量、动量守恒,动能不守恒。,去弹性散射,(Non-elastic scattering):(n.p)(n.,),等。,俘获,(Capture):(n.,)。,散射,(Spallation),以上均属与原子核的相互作用。,16,B、不带电粒子(X 、,、中子),质量减弱系数(/):描述物质中入射不带电粒子数目的减小,不涉及具体物理过程。,质量能量转移系数(,tr,/):描述不带电粒子穿过物质时,其能量转移给带电粒子数值。只涉及带电粒子获得的能量,而不涉及这些能量是否被物质吸收。,质量能量吸收系数(,en,/):描述不带电粒子穿过物质时,不带电粒子被物质吸收的能量。,当次级带电粒子动能较小、物质原子序数较低时,轫致辐射弱,g值接近于零,此时,en,/ 值近似,tr,/值。,数值上:质量减弱系数(/)质量能量转移系数(,tr,/)质量能量吸收系数(,en,/),17,4、辐射剂量学中使用的量,A 吸收剂量(D),同授与能(,)相联系,单位质量受照物质中所吸收的平均辐射能量。,单位Gy。适用于任何类型的辐射和受照物质,与一个无限小体积相联系的辐射量。受照物质中每一点都有特定的吸收剂量数值。,18,授与能,(energy imparted),(,1,)能量沉积事件(energy deposition event),由某个电离粒子或某组相关的电离粒子给指定沉积内物质授与能量的事件。,(2).某一能量沉积事件的授与能,1,某个电离粒子或某一组相关的电离粒子在指定体积V内发生的所有的相互作用中沉积能之和。,定义,通用表达式,19,h,B,e,+,13,C,h,e,-,E,n,16,O(n,),13,C,E,e,一次能量沉积事件的授与能示意图,Q=-2.215MeV,20,B、比释动能(K),同转移能(,tr,)相联系,不带电粒子在质量dm的物质中释放出的全部带电粒子的初始动能总和的平均值。,单位Gy。针对不带电粒子,对受照物质整体,而不对受照物质的某点而言。,实用时可先查比释动能因子表(国际上给出比释动能因子的推荐值),进而求得比释动能。,21,PP,电子对生成过程中反应能为Q=-2mc,2,,mc,2,为正负电子的静止质量能。,Energy transferred (转移能),tr,(1)定义,在指定体积V内由不带电粒子释放出来的所有带电的电离离子初始动能之和,用,tr,表示,单位是J。,22,(3),tr,通用表示方法,综上分析:在指定体积中的转移能,tr,可表示为,式中:,E,u,in,是进入体积V的所有不带电粒子的能量,但不包括带电粒子的静止能量。,E,n,u,out,是从体积V逸出的不带电粒子的能量,但不包括不带电粒子的静止质量能和次级带电粒子动能辐射损失逸出的部分。,Q,是入射的不带电粒子在体积V内引起的任何核和基本粒子的转变中,所有相关的核和基本粒子静止质量能改变(质量减少时为正,增加时为负)的总和。,23,C、照射量(X),X或,射线在单位质量的空气中,释放出来的全部电子完全被空气阻止时,在空气中产生一种符号的离子的总电荷的绝对值。,单位C/kg。针对X或,射线、空气。空气中各点的照射量不同。,空气中某点的照射量X与同一点处的能量注量,的关系:,若粒子为单能的,则照射量与粒子注量有如下关系:,24,X和 值得说明的问题,含义,:,自由空间或不同于空气的材料内某一点的照射量或照射量率的概念,可以用空气碰撞比释功能,Kc,a,来取代照射量,原因:,a.,由电离电荷量到能量的换算(乘以,(,w/e),a,因子)很不方便,b. Exposure,的含义容易混,c,只适用于,X,、,射线;,d,只对空气;,e,测量时必须满足电子平衡;,f,不能作为剂量的单位,历史误会。,25,思考题,一个10MeV射线进入体积V中并且遭遇了“电子对生成”这种类型的相互作用,由于这个相互作用,射线消失了,并产生能量相等的一个电子和一个正电子。在电子逃逸出体积之前,其动能的一半消耗于碰撞相互作用中。正电子将在飞行中淹没掉,在淹没之前,其动能的一半消耗于在体积V中所遭遇的碰撞相互作用。由正电子的淹没而形成的光子将逃出体极V。求上述事件中:(1)转移能为多大?(2)碰撞转移能为多大?(3)授予能为多大?,26,e,+,e,-,27,带电粒子平衡,带电粒子平衡,不带电粒子在某一体积元的物质中,转移给带电粒子的平均能量,等于该体积元物质所吸收的平均能量。发生在物质层的厚度大于次级带电粒子在其中的最大射程深度处。,5MeV, r=1mm 栅元0.21mm,2,28,比释动能与吸收剂量在物质中的变化:,29,带电粒子平衡的条件:,(1)离介质边界有一定距离,d, Rmax;,(2)均匀照射条件;,(3)介质均匀条件:介质对次级带电粒子的阻止本领,对初级辐射的质能吸收系数不变。,带电粒子平衡不成立:,(1)辐射源附近;,(2)两种物质的界面;,(3)高能辐射。,30,带电粒子平衡条件下,空气中照射量(X)和同一点处空气吸收剂量(Da)的关系为:,吸收剂量与物质的质量吸收系数成正比,即,故空气中同一点处物质的吸收剂量D,m,为:,照射量换算到某物质吸收剂量的换算因子,可查表得到。,31,吸收剂量、比释动能和照射量的区别,32,且电子平衡时,33,吸收剂量与比释动能的关系,带电粒子平衡下,D=K(1-g),g是次级电子在慢化过程中,能量损失于轫致辐射的能量份额。,对低能X或,射线,可忽略轫致辐射能量损失,此时,DK,34,本章概念,一、名词解释,电离辐射,粒子注量,粒子注量率,比释动能,吸收剂量,35,二、简答题,什么叫带电粒子平衡?,三、简述题,比释动能、吸收剂量和照射量间的区别与联系,36,四、计算题,1.4、在辐射场中,某点处放置一个圆柱形电离室,其直径为0.03m长为0.1m。在射线照射下产生10,-6,C的电离电荷。试求在该考察点处的照射量和同一点处空气的吸收剂量各为多少?,37,1.6 在60Co射线照射下,测得水体膜内某点的照射量为5.1810,-3,Ckg,-1,,试计算同一点处水的吸收剂量。,上式中,,60,Co射线包括1.17MeV和1.33MeV,分支比1:1,查P17表1.3不同光子能量对某些物质的fm值可知,能量在0.42MeV的射线对水的fm值都为37.64。剂量学计算能准确更好,可用插值法求表中未给出的数值点;防护学计算未知能量点可插值,也可按防护最安全角度考虑,将剂量值往大方向计算。,38,1.8 设在3min内测得能量为14.5 MeV的中子注量为1.510,11,m,-2,。求在这一点处的能量注量、能量注量率和空气的比释动能各为多少?,能量注量:,能量注量率:,空气的比释动能:,39,第二章回顾,1、照射量的标准测量方法,A 自由空气电离室,适用于测量50keV3MeV的X或,射线,基本原理根据照射量定义。,比释动能,L1和L2距离大于次级电子在,空气中的射程,保证电子平衡条件。,40,B 空腔电离室,测量较高能量的X或,射线的照射量,特点增加电离室的壁厚。测量依据布拉格戈瑞原理。,条件:介质内存在的空腔足够小以致,i腔内的气体电离几乎全部是介质中的次级电子引起的;,ii空腔的存在不会改变介质中初始光子和次级光子的能谱和角分布;,iii空腔周围介质厚度大于次级电子在其中的最大射程。,空腔位置处存在着电子平衡,S,m,g,物质与腔内气体的平均质量碰撞阻止本领比,41,2、中子当量剂量的测量,中子当量不同中子能量范围的中子吸收剂量乘以相应的辐射权重因子,最后相加,即得中子当量剂量。,实际测量中,测量不同中子能量范围的中子吸收剂量是困难的。这时在一定能量范围内,调整仪器的响应,使仪器的探测效率 正比于 。这样,辐射场中探测器测到的中子数N,n,,即正比于中子的当量剂量指数H,I,no,。,42,第二章作业,2.1 试简述自由空气电离室、空腔电离室测量照射量的基本原理。,2.2 何谓剂量仪的能量响应?影响能量响应的因素是什么?如何改善能量响应?,2.3、在标准状况下,设一个半径5 cm球状空气等效壁电离室,受,射线照射后产生1.5uC的总电荷。求照射量是多少?相应空气中的吸收剂量是多少?,43,2.7、用,2.5cm2.5cmNaI(Tl)闪烁体,测得与圆柱体轴线平行入射能量为1MeV的,光子计数率为100计数/s。试计算:2.5810,6,C/kg的光子注量;闪烁体的固有探测效率;计算照射量率为多大?假设NaI(Tl)的密度为4g/cm,3,,其对能量为1MeV光子的质量衰减系数,/,=0.05cm,2,/g,空气质量能量吸收系数,en,/,0.025cm,2,/g。,(1),(2),(3),44,2.10、试简述热释光元件测量剂量的基本原理。,2.11、设计一个G-M计数管式剂量率仪,若,光子能量为1MeV,探测效率为1%,计算管有效面积10cm,2,,要求测量量程为10,-6,10,-4,C/kg/h。试计算相应的计数率范围是多少?,45,本章试题举例,1、B-G腔需满足哪些条件?,2、什么样的剂量计不需刻度?,3、仪器能量响应?,4、热释光剂量计的原理?,5、量热计原理?,46,第三章回顾,第一节 辐射对人体健康的影响,一、影响辐射生物学作用的因素,1、物理因素与辐射有关的因素,辐射类型,剂量率及分次照射,照射部位和面积,照射的几何条件,47,2、生物因素与机体有关,不同生物种系的辐射敏感性,个体不同发育阶段的辐射敏感性,不同细胞,组织或器官的辐射敏感性,辐射防护即从影响辐射损伤的因素入手来进行防护,如对不同的辐射类型采取不同的防护方法、限制剂量和分次照射以使辐射损伤所发生的可能性最小。,48,二、剂量与效应的关系,随机性效应(,Stochastic effect),随机性效应特征“线性无阈”。,“无阈”指任何微小的剂量都可能诱发随机性效应。“线性”指随机性效应发生几率与所受剂量成线性关系,,但其后果的严重程度不一定,与所受剂量有关系。,剂量,有害效应的发生率,49,确定性效应有阈值。,超过阈值,效应肯定会发生,且其严重程度与所受剂量大小有关,剂量越大,效应越明显。,ICRP在其建议书草案(征求意见稿,2006)中将确定性效应也称为,组织反应,。,剂量,有害效应的严重程度,阈值,50,第二节 辐射防护中使用的量,一、与个体相关的辐射量,1、当量剂量(H):与辐射生物效应相联系,用同一尺度描述不同类型和能量的辐射对人体造成的生物效应的严重程度或发生几率的大小。,W,R,辐射权重因子与辐射种类和能量有关;,D,T,,R按组织或器官T平均计算的来自辐射R的吸收剂量;,H,T,单位Sv。,51,W,R,值大致与辐射品质因子Q值一致。所谓辐射品质,是指电离辐射授予物质能量在微观空间分布上的特征,传能线密度L,是描述加射品质的方法之一。,52,2、有效剂量(E):与人体各器官对辐射的敏感度相联系。描述辐射照射人体,给受到照射的有关器官和组织带来的总的危险。在非均匀照射下随机效应发生率与均匀照射下发生率相同时所对应的全身均匀照射的当量剂量。有效剂量单位Sv。,W,T,组织权重因子,在全身均匀受照射下各器官对总危害的相对贡献。,53,组织权重因子(W,T,)器官或组织受照射所产生的危害与全身均匀受照射时所产生的总危害的比值。即反映了在全身均匀受照射下各器官对总危害的相对贡献。,组织权重因子,54,有效剂量表示为表示了非均匀照射条件下随机效应发生率与均匀照射下发生率相同时所对应的全身均匀照射的当量剂量。,评价危险时,当量剂量、有效剂量,只能在远低于确定性效应阈值的吸收剂量下提供随机性效应概率的依据。,55,3、待积当量剂量H,50,T,、待积有效剂量H,50,,E描述内照射情况下,放射性核素进入人体内对某一器官或个人在一段时间内(50y)产生的危害。也可用来估计摄入放射性核素后将发生随机性概效应的平均几率。,56,第三节 人体受到照射的辐射来源及其水平,1、天然本底照射,宇宙射线 来自宇宙空间的高能粒子流,包括质子、,粒子、其它重粒子、中子、电子、光子、介子等;,宇生核素 宇宙射线与大气中的原子核相互作用产生,如,3,H、,14,C、,7,Be等;,原生核素 存在于地壳中天然放射性核素,以,238,U、,232,Th、,235,U为起始的三个天然放射系,及独立的长寿命放射性核素如,40,K等。,57,2、人工辐射,医疗照射 X射线检查,核动力生产 核燃料循环,核爆炸,58,第四节 辐射防护的基本原则,辐射防护的目的,防止有害的确定性效应,并限制随机性效应的发生率,使它们达到被认为可以接受的不平。,辐射实践正当化,涉及照射的实践,除非对受照个人或社会能够带来足以补偿其所产生的辐射危害的利益,否则不得采用。,59,防护与安全的最优化,对一项实践中的任一特定辐射源,个人剂量的大小、受照人数以及照射发生的可能性,在考虑了经济和社会因素之后,应当全部保持在合理可行的最低程度(ALARA As Low As Reasonably Achievable)。为了保证公平性,应当在这个过程中考虑个人剂量约束或个人危险约束。,最优化的定量分析技术代价利益分析Cost Benefit Analysis,60,剂量限制,个人剂量限值,个人受到所有有关实践联合产生的照射,应当遵守剂量限值。,剂量约束值,一种与源相关的个人剂量值,公众成员从任何受控源的计划运行中接受的年剂量上界。,干预的防护体系ICRP60,干预:任何旨在减小或避免不属于受控实践的或 因事故而失控的源所致照射或照射可能性的行动.,61,本章试题举例,1、确定性效应、随机性效应,2、当量剂量、有效剂量,3、待积当量剂量,4、辐射防护三原则,62,第四章回顾,第一节 外照射防护的一般方法,1.1、外照射防护的基本原则,尽量减少或避免射线从外部对人体的照射,使之所受照射不超过国家规定的剂量限值。,内、外照射的特点,照射方式,辐射源类型,危害方式,常见致电离粒子,照射特点,内照射,外照射,多见开放源,多见封闭源,电离、化学毒性,电离,、,高能、电子、X、n,持续,间断,63,1.2、外照射防护的基本方法,1、减少接触放射源的时间,2、增大与放射源的距离,3、设置屏蔽,1.3、屏蔽材料的选择, 一般选低Z材料 纸、铝箔、有机玻璃, 低Z+高Z材料 铝、有机玻璃、混凝土、铅,X、 高Z材料、通用建筑材料 铅、铁、钨,铀,N 高Z材料、含氢低Z材料 、含硼材料 水、石蜡、碳化硼铝、含硼聚乙烯,64,第二节,射线的剂量计算,点源的照射量率计算,点源:辐射场中某点与辐射源的距离,比辐射源本身的几何尺寸大5倍以上,即可把辐射源看成是点状的,称其为点状源,简称点源。,非点源:辐射场中某点与辐射源的距离,比辐射源本身的几何尺寸小于5倍,且辐射源有一定的大小和形状,因而该辐射源不能视为简单的点源。,65,点源的,照射量率计算,照射量率常数,非单能情况:,66,第三节 X、,射线在物质中的减弱规律,3.1 窄束X或射线的减弱规律,窄束 入射光子发生一次相互作用,就认为该光子消失,宏观衰减量质量能量减弱系数、质量厚度,物质对光子数目衰减,67,第四节,射线的屏蔽计算,点源屏蔽计算,点源,初级辐射占主导时:,透射比:,减弱倍数,求得K后,可查P199起附表613一定能量和屏蔽物下减弱K倍的对屏蔽物厚度,68,例7、强辐射场所用的,辐射源,通常都是在水井中进行倒源工作。强辐射源的运输容器高度为1m,从容器中提出源时,源可高出容器口不超过0.5m。现倒装,60,Co辐射源的活度为1.851015Bq,问需要多深的水井,才能使水井表面的当量剂量率低于3,Svh,-1,。,69,曲线A根据P109页附表6各向同性点源射线减弱K倍所需的水屏蔽层厚度作出,曲线B根据作出。A、B两曲线交点相应的水深约为33m,再加上操作源所需的厚度1.5m,因而水井总需深度为34.5m。,70,第五节 射线外照射防护,射线特点:能谱连续,在物质中的减弱近似指数规律,散射显著;,轫致辐射;,点源的剂量分布与距离平方成反比,但有很多修正项。,点源对空气吸收剂量率近似:,射线的射程,71,例10、设计为存放活度为3.710,12,Bq的,32,P点状源的溶器。选定用有机玻璃作内层屏蔽层,铅作外屏蔽层。计算所需的有机玻璃和铅各为多厚?假设离辐射源1m的当量剂量率控制水平为7.5,Svh,-1,。若内外层材料颠倒过来,则又将怎么样?,由P105页表4.9某些放射性核素射线的最大能量和平均能量可知,32P的射线最大电子能量为1.711(100%),由P109页表4.10查得有机玻璃的密度为1.18gcm,-3,,由此得有机玻璃厚度,72,由P184页附表1可查得,与轫致辐射光子平均能量Eb为0.695MeV相应的空气质量能量吸收系数为2.91810,-3,m,2,kg,-1,。用(4.66)式可算得空气中的吸收剂量率为:,射线的辐射权重因子为1,故,相应的减弱倍数为:,查P202页附表,可得铅的屏蔽厚度为5.86cm。,73,第六节 中子外照射的防护,1中子源特点总结:,放射性中子源,优点:各向同性、源的总体尺寸小(可视为点源),缺点:中子产额低(,400 中子/(10,6,s Bq),),,中子场常伴随有,辐射,加速器中子源,优点:产额高(,10,9,10,10,中子/(s,A) ,,(p,n)源伴随,辐射少,缺点:中子产额角分布严重,各角度中子分布不均,中子源体积较大,74,2 当量剂量计算,单能中子场,具有能量分布的中子场,与中子谱,n,E,相应的中子平均当量剂量换算因子,(4.73),(4.74),(4.75),75,3、中子在屏蔽层中的减弱,中子在物质中衰减规律总结:,非弱性散射:有阈值,中子能量在25MeV以下,非弹性散射截面随中子能量增大而增加。,弹性散射:与中子相碰撞的原子核越轻,中子转移给反冲核能量越多。氢是1MeV左右的中子最好的慢化剂。,要使快中子(0.510MeV)慢化,首先应使用重或较重的物质,通过非弹性散射使中子能量很快降低到与原子核的第一激发能级相应的能量以下;以后再利用含氢物质,能过弹性散射使中子能量进一步降低到热能区。,硼的热中子慢化截面大,且其伴随的,辐射能量低,因而适宜做热中子慢化剂。反应堆中常用其吸收热中子,调节临界系数。,76,计算宽束流中子减弱的分出截面法,经历散射作用的中子被有效地从穿出屏蔽的中子束中“分出”了,使穿过屏蔽层的都是哪些在屏蔽层内未经相互作用的中子。,满足下列条件可用分出截面法:,A、屏蔽层足够厚,使得在屏蔽层后面的当量剂量主要是由中子束中一组贯穿能力最强的中子的贡献所致;,B、屏蔽层内须含有铁、铅之类的中等重或重的材料,以使入射中子能量能通过非弹性散射很快降低到1MeV左右;,C、屏蔽层内要含有足够的氢,以保证在很短的距离内,使中子能量从1MeV左右很快降到热能区,并使其能在屏蔽层内被吸收。,77,为使参考点上中子注量率降低到,L,(m,-2,s,-1,),所需屏蔽厚度d,可由下式计算:,78,14、已知,226,Ra-Be中子源的活度为3.710,12,Bq(中子产额见表4.12)。求离源2m处的中子与,当量剂量率。,中子当量剂量率:,从P112页表4.12查得,226,Ra-Be中子源的中子产额为40510,-6,s,-1,Bq,-1,,查P117页表4.15得226Ra-Be中子源的当量剂量换算因子为34.510,15,Svm,-2,。,79,当量剂量率:,查P82页表4.4得核素,226,Ra的空气比释动能常为6.1310,-17,C m,-2,kg,-1,Bq,-1,s,-1,。,P128 例1 中子屏蔽计算的例子,80,第五章 内照射防护、监测与评价,第一节 前言,内照射:,体内放射性核素产生的照射。,特点:,开放源,化学毒性、电离(,、),持续照射,直至核素衰变完或排出体外,影响因素:,放射性核素的半衰期、辐射类型和能量,进入人体的数量、理化状态、蓄积的部位和滞留时间,81,描述:,待积有效剂量(本章第五节),评价方法:,利用ICRP78号出版物及其他资料提供的图表,可以方便地由生物分析数据和全身测量结果求得摄入量,进而计算出待积有效剂量。,内照射防护基本原则,内照射防护的基本原则是制定各种规章制度,采取各种有效措施,阻断放射性物质进入人体的各种途径,在最优化原则的范围内,使摄入量减少到尽可能低的水平。,ICRP:the International Commission on Radiological Protection,ICRP-78:Individual monitoring for internal exposure of workers,82,二、库室理论,实验表明,除碱土金属外,放射性核素在人体任一器官或组织中的传输过程可以用一阶动力学方程描述。,若进入某一器官的指定核素与组织结合的牢固程度是一样的,则有:,其中 为核素在器官的生物半排期。,例如:锆在骨中的传输就满足上式。,当 =Q, q(0)=0时,83,由N个库室的动力方程组成一个方程组,该方程组可以用库室模型图表示,二者是等效的。,84,本章试题举例,1、内照射与外照射的不同之处?,2、内辐射防护的基本措施为( 包容 )、( 隔离 )、( 稀释 )和( 净化 )。,3、内照射防护基本原则?,4、ICRP推荐的内照射模型有(呼吸道模型)、(胃肠道模型)和(参考人)。,85,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!