资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,例题,:,求图示力系合成的结果。,x,y,F,1,(2,1),5,12,cos=12/13,sin=5/13,F,2,(-3,2),45,0,M,F,3,(0,-4),O,1,解,:1,、取,0,点为简化中心,建立图示坐标系:,主矢:,F,R,/,=, F,i,主矩:,Mo =,m,o,( F,i,),x,y,F,1,(2,1),5,12,cos=12/13,sin=5/13,F,2,(-3,2),45,0,M,F,3,(0,-4),O,2,x,y,F,1,(2,1),5,12,cos=12/13,sin=5/13,F,2,(-3,2),45,0,M,F,3,(0,-4),O,F,/,Rx,=,F,X,=,F,1,cos,-,F,2,cos45,o,+ F,3,= 70N,F,/,Ry,=,F,y,=,F,1,sin,+ F,2,sin45,o,= 150N,3,x,y,F,1,(2,1),5,12,cos=12/13,sin=5/13,F,2,(-3,2),45,0,M,F,3,(0,-4),O,F,/,R,4,x,y,F,1,(2,1),5,12,cos=12/13,sin=5/13,F,2,(-3,2),45,0,M,F,3,(0,-4),O,M,O,=,m,O,(,F,i,) = - F,1,cos 1 + F,1,sin 2,+ F,2,cos 45,0, 2 - F,2,sin 45,0,3,+ M,+ F,3,4,=580N.m,F,1X,F,1y,F,2X,F,2y,M,O,5,x,y,O,F,/,R,因为主矢、主矩均不为,0,,所以简化的最终结果为一个,合力,此合力的大小和方向与主矢相同。,M,O,6,x,y,O,F,/,R,M,O,所以简化的最终结果为一个合力,F,R,。,求合力的作用线位置,d,=M,O,/F,R,=3.5,m,=,x,sin,x,=,M,O,/(F,R,sin,),= M,O,/F,Ry,X,F,R,O,1,d,7,例:图示力系有合力,.,试求合力的大小 、方向及 作用线到,A,点的距离。,A,B,1m,1m,1m,25kN,20kN,18kN,60,o,30,o,8,A,B,1m,1m,1m,25kN,20kN,18kN,60,o,30,o,解,:,求力系的主矢,F,R,x,= 20cos60,o,+ 18cos30,o,= 25.59,F,R,y,= 25+ 20sin60,o,- 18sin30,o,= 33.32,9,求力系的主矩,A,B,1m,1m,1m,25kN,20kN,18kN,60,o,30,o,F,R,M,A,= 125 + 2 20sin60,o,- 3 18sin30,o,= 32.64,M,A,F,R,d,求合力的作用线位置,10,4,、固定端支座,:,A,F,Ax,M,A,既能限制物体移动又能限制物体转动的约束,.,A,F,A,Y,11,5.,平行分布的线荷载,x,A,B,A,a,b,B,q,q,x,非均布线荷载,(,荷载图,),荷载是作用在物体上的主动力。,如果荷载分布在一个狭长的面积或体积上,则可以把它,简化成沿长度方向分布的线荷载,线荷载的大小用,线荷载集度,q,(,N / m ; kN / m,),表示,均布线荷载,12,A,B,q,合力大小,:,F,R,=,q,l,合力作用线通过中心线,AB,的中点,C,l,F,R,C,l / 2,(1),均布线荷载,(,q,=,常数,),13,A,B,b,q,0,d,x,x,l,q(x)d,x,(2),按照线性规律变化的线荷载,(,三角形荷载,)q,常数,合力大小,:,14,A,B,b,q,m,d,x,x,l,C,F,R,q(x)d,x,合力作用点,C,的位置,2,l,/ 3,15,二,.,平面任意力系的平衡条件,平面任意力系平衡的必要、充分条件,(一)基本平衡方程,F,x,= 0,F,y,= 0,M,o,( F,) = 0,能解,3,个未知量,(一力矩式),16,(,1,) 二力矩式,投影轴,x,不能与矩心,A,和,B,的连线垂直,.,M,A,( F,i,) = 0,M,B,( F,i,) = 0, F,x,= 0,(二)平面任意力系平衡方程的其它形式,A,B,x,17,( 2 ),三力矩式,三个矩心,A , B,和,C,不在一直线上,M,A,( F,i,) = 0,M,B,( F,i,) = 0,M,C,( F,i,) = 0,A,B,C,18,l,/2,l,/2,A,B,C,M,P,例题,: 在水平梁,AB,上作用一力偶矩为,M,的力偶,,在梁长的中点,C,处作用一集中力,P,,它与水平的夹角,为,,,梁长为,l,且自重不计。求支座,A,和,B,的反力。,19,l,/2,l,/2,A,B,C,M,P,解,:,取水平梁,AB,为研究对象画受力图,l,/2,l,/2,A,B,C,M,P,F,Ax,F,Ay,F,B,20,l,/2,l,/2,A,B,C,M,P,l,/2,l,/2,A,B,C,M,P,F,Ax,F,Ay,F,B,F,x,= 0,F,Ax,- P cos,= 0,F,A,x,= P cos,M,A,(,F,i,) = 0,F,y,= 0,F,A,y,- P sin,+ F,B,= 0,21,例,:,一容器连同盛装物共重,W=10kN,作用在容器上的风荷载,q=1kN/m,在容器的受力平面内有三根杆件支承.求各杆所受的力.,2m,2m,W,q,A,B,C,D,30,o,30,o,30,o,30,o,60,o,22,解,:,杆件,AD,AC,和,BC,都是二力杆,.,取容器为研究对象画受力图,2m,2m,W,A,B,C,D,30,o,30,o,30,o,30,o,60,o,E,Q,1m,S,AD,S,AC,S,BC,Q = 12 = 2 kN,23,利用平衡方程求解,:,- 21 - 101 - S,BC,cos30,o,2 = 0,S,BC,= - 6.928 kN,M,C,(,F,i,) = 0,10 2 - 2(1+2 cos30,o,) + S,AD,4 cos30,o,= 0,S,AD,= - 4.196 kN,M,E,(,F,i,) = 0,2 (2 sin60,o,-1) + 2 S,AC,= 0,S,AC,= - 0.732 kN,M,A,(,F,i,) = 0,24,总 结,1.,平面任意力系平衡的必要、充分条件,投影轴,x,不能与矩心,A,和,B,的连线垂直,基本平衡方程,(,一力矩式,),F,x,= 0,F,y,= 0,M,o,( F,) = 0,二力矩式,M,A,( F,i,) = 0,M,B,( F,i,) = 0, F,x,= 0,25,总 结,三个矩心,A , B,和,C,不在一直线上,三力矩式,M,A,( F,i,) = 0,M,B,( F,i,) = 0,M,C,( F,i,) = 0,26,问 题 判 断,平面任意力系的三个独立平衡方程不能全部采用投影方程。,27,问 题 判 断 答 案,平面任意力系的三个独立平衡方程不能全部采用投影方程。,(对),28,(,三,),平面平行力系的平衡,(a),一力矩式,F,y,= 0,M,o,(,F,i,) = 0,(b),二力矩式,M,A,(,F,i,) = 0,M,B,(,F,i,) = 0,F,1,F,2,F,n,y,x,o,立,xoy,F,x,0 (,恒等式),(A.B,连线不能,与各力平行,),29,例:已知,F=40KN,,,M=150KNm.,求支座,A,、,B,处的反力。,A,B,F,M,解:研究对象:,AB,梁,.,画受力图,.,6m,3m,A,B,F,M,F,B,F,A,M,A,=0,-M +F,B,6 - F,9=0,F,B,= =85KN,M,B,=0,- F,A,6 - M - F,3=0,F,A,= = - 45KN,30,例: 塔式起重机如图所示。设机身的重力为,G,1,,载重的重力,为,G,2,,距离右轨的最大距离为,L,,平衡重物的重量为,G,3,,,求 起重机满载和空载均不致翻倒时,平衡重物的重量,G,3,所满足的条件。,31,G,2,G,3,G,1,C,A,B,e,a,b,L,32,G,2,G,1,C,e,a,b,L,N,A,N,B,G,3,A,B,解:取起重机为研究对象,1,、满载时,当重物距离右轨最远时,易右翻。,当起重机平衡,m,B,( F ) = 0,- G,1,e - G,2,L - N,A,b+ G,3,(,a+ b,),= 0,N,A,= - G,1,e - G,2,L + G,3,(,a+ b,), / b,33,G,2,G,1,C,e,a,b,L,N,A,N,B,G,3,A,B,N,A,= - G,1,e - G,2,L + G,3,(,a+ b,), / b,起重机不向右翻倒的条件为:,N,A,0,G,3,( G,1,e + G,2,L) /,(,a+ b,),34,G,2,G,1,C,e,a,b,L,N,A,N,B,G,3,A,B,2,、空载时,,G,2,=0,,易左翻。当起重机平衡时,m,A,(,F,) = 0,G,3,a - G,1,(,b+ e,),+ N,B,b = 0,N,B,= - G,3,a + G,1,(,b+ e,), / b,35,G,2,G,1,C,e,a,b,L,N,A,N,B,G,3,A,B,N,B,= - G,3,a + G,1,(,b+ e,), / b,起重机不向左翻倒的条件为:,N,B,0,G,3,G,1,(,b+ e) / a,36,G,2,G,1,C,e,a,b,L,N,A,N,B,G,3,A,B,( G,1,e + G,2,L) /,(,a+ b,),G,3,G,1,(,b+ e) / a,所以,两种情况下起重机均不翻倒的条件为:,37,A,B,F,F,B,F,Ax,F,Ay,(,静定),F,Bx,A,B,F,F,Ax,F,A,y,F,By,(,超静定),A,B,C,P,B,C,P,F,B,F,cx,F,cy,A,C,M,F,c,x,F,cy,M,A,F,Ax,F,Ay,P,M,A,B,C,(超静定),(静定),38,物体系统是指由若干个物体通过适当的约束相互连接 而组成的系统,.,解静定物体系统平衡问题的一般步骤,:,(a),分析系统由几个物体组成,.,(b),按照便于求解的原则,适当选取整体或个,体为研究对象进行受力分析并画受力图,.,(c),列平衡方程并解出未知量,2.,物体系统的平衡,*.,一般需取多次研究对象;受力图正确;定路径。,39,例,:,组合梁,ABC,的支承与受力情况如图所示,.,已知,P = 30kN, Q = 20kN,= 45,o,.,求支座,A,和,C,的约束反力,.,2m,2m,2m,2m,P,Q,A,B,C,40,2m,2m,Q,B,C,X,B,Y,B,R,C,解:,(1),取,BC,杆为研究对象画受力图,.,M,B,(,F,i,) = 0,- 220sin45,o,+4R,C,= 0,R,C,= 7.07 kN,41,(2),取整体为研究对象画受力图,.,2m,2m,2m,2m,P,Q,A,B,C,X,A,Y,A,M,A,R,C,F,x,= 0,X,A,- 20 cos45,o,= 0,X,A,= 14.14 kN,F,y,= 0,Y,A,- 30 - 20 sin45,o,+ R,C,= 0 Y,A,=37.07KN,M,A,(F,i,)=0 M,A,- P2 -6Qsin45+R,C,8=0 M,A,=31.72KNm,。,42,例题 :三铰拱,ABC,的支承及荷载情况如图所示。,已知,P=20 kN,,均布荷载,q =,4kN/m,。,求:铰链支座,A,和,B,的约束反力。,1m,2m,2m,3m,A,B,C,q,P,43,1m,2m,2m,3m,A,B,C,q,P,解,: ( 1 ),取整体为研究对象,画受力图,.,Y,A,X,A,X,B,Y,B,44,1m,2m,2m,3m,A,B,C,q,P,Y,A,X,A,X,B,Y,B,M,A,( F,) = 0,-,4 3 1.5 - 20 3 + 4 Y,B,= 0,Y,B,= 19.5 kN,45,1m,2m,2m,3m,A,B,C,q,P,Y,A,X,A,X,B,Y,B,F,y,= 0,Y,A,- 20 + 19.5 = 0,Y,A,= 0.5 kN,46,( 2 ),取,BC,为研究对象画受力图,1m,3m,B,C,P,X,C,Y,C,X,B,Y,B,47,1m,3m,B,C,P,X,C,Y,C,X,B,Y,B,-120 + 219.5 + 3X,B,= 0,X,B,= - 6.33 kN,M,C,( F,) = 0,48,F,x,= 0,43 + X,A,+ X,B,= 0,X,A,= - 5.67 kN,( 3 ),取整体为研究对象,1m,2m,2m,3m,A,B,C,q,P,Y,A,X,A,X,B,Y,B,49,例题: 图示曲柄冲床简图,由轮,I,、链杆,AB,和冲头,B,组成 。,OA = r , AB=L,。,若忽略摩擦和物体的自重,当,OA,在铅垂位置,冲压力为,F,时,系统处于平衡。求,作用在轮,I,上的力偶矩,M,的大小,轴承,O,处的约束反力,链杆所受的力及冲头,B,对导轨的侧压力。,B,F,O,A,I,M,50,F,y,= 0,F,x,= 0,F - F,AB,cos,=0,F,AB,= F/cos,F,N,- F,AB,sin,=0,F,N,= F,AB,sin,=F tg,解:,1,、取冲头,B,为研究对象,B,F,O,A,I,M,F,x,y,F,N,F,AB,51,o,A,M,x,y,F,y,= 0,F,x,= 0,F,Ox,+ F,/,AB,cos,=0,F,Oy,+ F,/,AB,sin,=0,F,Ox,=- F,/,AB,cos, = - F,F,Oy,=- F,/,AB,sin, = -,F tg,m,O,(,F,) = 0,M-,F,/,AB,cos, OA=0,M =,F,/,AB,cos, OA = Fr,2,、再取轮,I,为研究对象,B,F,O,A,I,M,F,Oy,F,Ox,F,/,AB,52,2m,2m,F,A,B,C,2m,1m,D,q,B,例题:已知,F=10KN,,,q,B,= 6KN/m,,,求,A,,,C,,,D,处的约束反力。,53,2m,2m,F,A,B,C,2m,1m,D,q,B,(,1,)取,CD,为研究对象,C,D,q,C,F,D,F,Cy,F,Cx,54,2m,2m,F,A,B,C,2m,1m,D,q,B,C,D,q,C,F,D,F,Cy,F,Cx,55,2m,2m,F,A,B,C,2m,1m,D,q,B,C,D,q,C,F,D,F,Cy,F,Cx,56,2m,2m,F,A,B,C,2m,1m,D,q,B,C,D,q,C,F,D,F,Cy,F,Cx,57,2m,2m,F,A,B,C,2m,1m,D,q,B,2m,1m,F,A,B,C,D,q,B,F,D,F,Ay,F,Ax,M,A,取整体为研究对象,58,2m,2m,F,A,B,C,2m,1m,D,q,B,2m,1m,F,A,B,C,D,q,B,F,D,F,Ay,F,Ax,M,A,59,2m,2m,F,A,B,C,2m,1m,D,q,B,2m,1m,F,A,B,C,D,q,B,F,D,F,Ay,F,Ax,M,A,60,2m,2m,F,A,B,C,2m,1m,D,q,B,2m,1m,F,A,B,C,D,q,B,F,D,F,Ay,F,Ax,M,A,61,例题:由三根梁,AC,,,CE,和,EG,利用中间铰,C,和,E,连接成的梁系。不计梁重及摩擦。求支座反力。,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,62,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,解,:(,1,),取,EG,为研究对象,E,G,2KN/m,F,Ey,F,Gy,F,Ex,由对称关系得,63,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,(,2,),取,CE,为研究对象,E,G,2KN/m,F,Ey,F,Gy,F,Ex,C,D,10KN,E,F,Ey,F,Ex,F,Dy,F,Cy,F,Cx,64,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,E,G,2KN/m,F,Ey,F,Gy,F,Ex,C,D,10KN,E,F,Ey,F,Ex,F,Dy,F,Cy,F,Cx,65,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,E,G,2KN/m,F,Ey,F,Gy,F,Ex,C,D,10KN,E,F,Ey,F,Ex,F,Dy,F,Cy,F,Cx,66,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,C,D,10KN,E,F,Ey,F,Ex,F,Dy,F,Cy,F,Cx,A,B,C,20KN,(,3,),取,AC,为研究对象,F,Cy,F,Cx,F,By,F,Ay,F,Ax,67,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,A,B,C,20KN,F,Cy,F,Cx,F,By,F,Ay,F,Ax,68,4.5,A,B,C,D,E,G,20KN,10KN,2KN/m,3m,3,1.5,2,2.5,1.5,A,B,C,20KN,F,Cy,F,Cx,F,By,F,Ay,F,Ax,69,问 题 判 断,若平面平行力系平衡,可以列出三个独立的平衡方程。,70,问 题 判 断 答 案,若平面平行力系平衡,可以列出三个独立的平衡方程。,(错),71,例,:,判定图示桁架中的零杆,.,A,B,C,D,E,F,G,H,I,P,P,解,:AB,和,BC,是零杆,.,CI,是零杆,.,EG,是零杆,.,EH,是零杆,.,72,例,:,一屋顶桁架的尺寸及荷载如图所示,试用节点法求每根杆件的内力,.,5kN,5kN,10kN,10kN,10kN,A,H,B,C,D,E,F,G,44=16m,23= 6m,73,解,:,取整体为研究对象画受力图,.,5kN,5kN,10kN,10kN,10kN,A,H,B,C,D,E,F,G,44=16m,23= 6m,R,A,R,H,去掉零杆,BC,和,FG,74,m,A,(,F,i,) = 0,-10(4+8+12)-516+16R,H,= 0,R,H,= 20 kN;,R,A,= 20 kN,取节点,A,为研究对象画受力图,.,5kN,A,20 kN,S,AC,S,AB,sin,= 0.6,cos,= 0.8,F,y,= 0,20 - 5 + 0.6 S,AC,= 0,S,AC,= - 25 kN,F,x,= 0,(-25)0.8+S,AB,= 0,S,AB,= 20 kN,75,取节点,B,为研究对象画受力图,.,F,x,= 0,S,BE,- 20 = 0,S,BE,= 20 kN,20 kN,S,BE,B,76,联立,(1)(2),两式得,:,S,CD,= - 22 kN,S,CE,= - 3 kN,根据对称性得,:,S,DG,= - 22 kN,S,GE,= - 3 kN,S,GH,= - 25 kN,10kN,C,S,CD,-,25kN,S,CE,取节点,C,为研究对象画受力图,.,F,x,= 0,0.8S,CD,+S,CE,-(-25)= 0,(1),F,y,= 0,0.6S,CD,-S,CE,-(-25)-10 = 0,(2),77,10kN,D,-22kN,-22kN,S,DE,F,y,= 0,0.8-(-22) - (-22)-10 - S,DE,= 0,S,DE,= 25.2 kN,取节点,D,为研究对象画受力图,.,78,例,:,图示为某铁路桥中的一跨,设机车的一段进入桥梁时,桥梁所受的荷载是,P=300kN, Q=800kN, Q,1,=550kN.,试用截面法求杆件,DF,DG,和,EG,的内力,.,P,P,P,P,P,Q,1,Q,Q,Q,A,B,C,D,E,F,G,H,105.5=55m,7m,79,解,:,取整体为研究对象画受力图,.,m,H,(F,i,) = 0,P,P,P,P,P,Q,1,Q,Q,Q,A,B,C,D,E,F,G,H,105.5=55m,7m,R,A,R,H,-55R,A,+(49.5+44+38.5+33+27.5)P,+22Q,1,+(16.5+11+5.5)Q=0,R,A,= 1750 kN,80,取,m,m,截面把桁架分为两部分.,P,P,P,P,P,Q,1,Q,Q,Q,A,B,C,D,E,F,G,H,105.5=55m,7m,R,A,R,H,m,m,81,取左部分为研究对象画受力图,.,P,P,A,B,C,D,E,R,A,G,S,DF,S,DG,S,EG,m,G,(F,i,) = 0,(5.5+11)P-16.5 R,A,-7 S,DF,= 0,S,DF,= 3275 kN,F,y,= 0,S,DG,= -1462.5 kN,m,D,(F,i,) = 0,-11R,A,+ 5.5P + 7S,EG,= 0,S,EG,= 2514 kN,82,例,:,图示为一平面组合桁架.已知力,P,求,AB,杆的内力,S,AB,.,a,/ 3,a,/ 3,P,A,B,C,D,E,F,a,/ 3,a,/,2,a,/,2,83,解,:,取整体为研究 对象画受力图,.,F,x,= 0,a,/ 3,a,/ 3,P,A,B,C,D,E,F,a,/ 3,a,/,2,a,/,2,X,A,Y,A,R,B,X,A,+ P = 0,X,A,= - P,m,A,(F,i,) = 0,a,R,B,- aP = 0,R,B,= P,F,y,= 0,Y,A,+ P = 0,Y,A,= - P,84,对整体进行构成分析,.,a,/ 3,a,/ 3,P,A,B,C,D,E,F,a,/ 3,a,/,2,a,/,2,X,A,Y,A,R,B,桁架由两个简,单桁架,ABC,和,DEF,用,AE,CD,BF,三根杆连接而成,.,这类问题应先,截断连接杆,求出,其内力,.,85,截开连接杆,AE,CD,和,BF,并取下半个桁架为研究对象画受力图,.,X,A,Y,A,R,B,S,AE,S,BF,S,CD,O,A,B,C,m,O,(,F,i,) = 0,86,取节点,B,为研究对象画受力图,.,R,B,S,BA,S,BF,S,BC,B,F,y,= 0,F,x,= 0,87,(1):,分别取,BC,和,ACD,为研究对象画受力图,.,B,C,D,A,M,l,l,l,l,B,C,M,l,l,R,R,D,A,l,l,R,R,A,R,D,M,R l,= 0,88,例,.,求图示按线性规律变化的线荷载的合力 大小和,合力作用点,C,的位置.,A,B,a,b,q,1,q,2,l,89,解,:(1),A,B,a,b,q,1,q,2,l,R,C,90,(2),应用叠加原理,A,B,a,b,q,1,q,2,l,A,B,q,1,l,A,B,q,2,-q,1,l,A,B,q,1,l,R,1,=q,1,l,A,B,q,2,-q,1,l,C,C,2,l,/ 3,91,R = R,1,+ R,2,A,B,l,R,1,R,2,R,C,92,
展开阅读全文