资源描述
,平行线的性质,【例】,(2011,陕西中考,),如图,,ACBD,,,AE,平分,BAC,交,BD,于点,E,,若,1=64,则,2=_.,【解题探究,】,由图可知,1+,CAB,=180,.,由,1=64,从而求得,CAB=,116,.,再由,AE,平分,BAC,,可得,CAE=,58,.,由,ACBD,,可得,2+,CAE,=180,,从而求得,2=,180,-58,=122,.,答案:,122,【跟踪训练,】,1.(2012,株洲中考,),如图,已知直线,ab,,,直线,c,与,a,,,b,分别交于,A,,,B,,且,1=120,则,2=( ),(A)60,(B)120,(C)30,(D)150,【解析,】,选,B.,因为,ab,所以,1=3,,,又,2=3,,所以,2=120,.,故选,B.,2.(2012,临沂中考,),如图,,ABCD,,,DB,BC,,,1,40,,则,2,的度数是,( ),(A)40,(B)50,(C)60,(D)140,【解析,】,选,B.,因为,ABCD,,所以,1=BCD,,又因为,1=40,,所以,BCD=40,,因为,DBBC,所以,CBD=90,,所以,2=180,90,40,=50,.,故选,B.,3.,如图,,ABCD,,直线,EF,分别交,AB,,,CD,于点,E,,,F,,,EG,平分,AEF,,,1=40,,,则,2,的度数为,_.,【解析,】,因为,EG,平分,AEF,,所以,AEG=GEF,,,因为,ABCD,,,所以,AEG=1=40,所以,AEF=2AEG=80,,,所以,2=180,-AEF=180,-80,=100,.,答案:,100,4.,如图所示,小张从家,(,图中,A,处,),出发,,向南偏东,40,的方向走到学校,(,图中,B,处,),,再从学校出发,向北偏西,75,的,方向走到小明家,(,图中,C,处,),,试问,ABC,为多少度?,【解析,】,由题意,得,DBAE,,,所以,DBA=EAB=40,,,又因为,CBD=75,所以,ABC=CBD-DBA=75,-40,=35,.,1.,如图,已知,ABCD,,,A,70,,则,1,的度数是,( ),(A)70,(B)100,(C)110,(D)130,【解析,】,选,C.,因为,ABCD,,,A,70,,所以,1,的邻补角为,70,所以,1=110,.,2.,如图,已知,ab,,,1=65,,,则,2,的度数为,( ),(A)65,(B)125,(C)115,(D)25,【解析,】,选,C.,因为,ab,,所以,1=3=65,,所以,2=180,-65,=115,.,3.,如图,已知,ABCD,,,1=70,,,则,2=_,,,3=_,_,_,_,_,,,4=_,_,_,_,_,.,【解析,】,2,1=70,(,对顶角相等,),,,3=1=70,(,两直线平行,同位角相等,).,因为,3+4=180,(,补角的定义,),,所以,4=110,.,答案:,70,70,110,4.,已知,ABCD,,,BE,平分,ABC,,,CDE,150,,则,C,_.,【解析,】,因为,CDE,150,所以,CDB=30,因为,ABCD,,,BE,平分,ABC,,,所以,CBD=ABD=CDB=30,,,所以,ABC=60,,,所以,C,120,.,答案:,120,5.,已知:,ABCD,,,AE,平分,BAC,,,CE,平分,ACD,,请说明:,AECE.,【解析,】,过,E,作,EMAB,交,AC,于,M.,因为,ABCD,,则,ABEMCD,,,所以,BAC+ACD,180,(,两直线平行,同旁内角互补,),,,EAB,AEM,,,ECD,MEC(,两直线平行,内错角相等,).,又,因为,AE,平分,BAC,,,CE,平分,ACD,,,所以,EAC,BAC,,,ECA,ACD,,,所以,EAC+ECA= (BAC+ACD)=90,所以,MEC+MEA,180,-90,=90,,,即,AEC=90,所以,AECE.,
展开阅读全文