资源描述
单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第四章,多个样本均数比较,的方差分析,Analysis of Variance, ANOVA,Content,1.,Basal ideal and application conditions,2.,ANOVA of completely random designed data,3.,ANOVA of randomized block designed data,4.,ANOVA of,latin,square designed data,5.,ANOVA of cross-over designed data,6.,Multiple comparison of sample means,7.,Bartlett test and,Levene,test,第一节,方差分析的基本思想,及其应用条件,目的:,推断多个总体均数是否有差别。,也可用于两个,方法:,方差分析,即多个样本均数比较,的,F,检验。,基本思想:,根据资料设计的类型及研究目的,可将,总变异,分解为,两个或多个部分,,每个部分的,变异,可由,某因素,的作用来,解释,。通过比较可能由某因素所至的变异与随机误差,即可了解该因素对测定结果有无影响。,应用条件:,总体,正态且方差相等,样本,独立、随机,设计类型:,完全随机设计资料的方差分析,随机区组设计资料的方差分析,拉丁方设计资料的方差分析,两阶段交叉设计资料的方差分析,完全随机设计资料的方差分析的基本思想,合计,N S,:,第,i,个处理组第,j,个观察结果,记总均数为 ,各处理组均,数为 ,总例数为,N,n,l,+,n,2,+,n,g,,,g,为处理组数。,1.,总变异,:,全部测量值大小不同,,这种变异称为总变异。,总变异的大小可以用离均差平方和,(sum of squares of deviations from mean,,,SS,),表示,,即各测量值,X,ij,与总均数差值的平方和,记为,SS,总,。,总变异,SS,总,反映了所有测量值之间总的变异程度。,计算公式为,其中:,2,组间变异:,各处理组由于接受处理的,水平,不同,各组的样本均数,(,i,1,,,2,,,,,g,),也大小不等,这种变异称为组间变异。,其大小可用各组均数与总均数的离均差平方和表示,记为,SS,组间,。,计算公式为,3,组内变异:,在同一处理组中,虽然每个受试对象接受的处理相同,但测量值仍各不相同,这种变异称为组内变异(误差)。组内变异可用组内各测量值,X,ij,与其所在组的均数的差值的平方和表示,记为,SS,组内,表示随机误差的影响。,三种变异的关系,:,均,方差,均方,(,mean square,,MS,)。,检验统计量:,如果,,则 都为随机误差 的估计,,F,值应接近于,1,。,如果,不全相等,,F,值将明显大于,1,。,用,F,界值(单侧界值)确定,P,值。,第二节,完全随机设计资料的方差分析,(completely random design),是采用完全随机化的分组方法,将全部试验对象分配到,g,个处理组(水平组),各组分别接受不同的处理,试验结束后比较各组均数之间的差别有无统计学意义,推论处理因素的效应。,一、完全随机设计,例,4-1,某医生为了研究一种降血脂新药的临床疗效,按统一纳入标准选择,120,名患者,采用完全随机设计方法将患者等分为,4,组进行双盲试验。问如何进行分组?,(,1,)完全随机分组方法:,1.,编号:,120,名高血脂患者从,1,开始到,120,,见表,4-2,第,1,行(,P72,);,2.,取随机数字:,从附表,15,中的任一行任一列开始,如,第,5,行第,7,列,开始,依次读取,三位数,作为一个随机数录于编号下,见表,4-2,第,2,行;,3.,编序号,:将全部随机数字从小到大,(,数据相同则按先后顺序)编序号,见表,4-2第3,行。,4.,事先规定:,序号,1-30,为甲组,序号,31-60,为乙组,序号,61-90,为丙组,序号,91-120,为丁组,见表,4-2,第四行。,(,2,)统计分析方法选择:,1.,对于正态分布且方差齐同的资料,常采用完全随机设计的,单因素方差分析,(one-way ANOVA),或成组资料的,t,检验(,g,=2,);,2.,对于非正态分布或方差不齐的资料,可进行,数据变换,或采用,Wilcoxon,秩和检验,。,二、变异分解,例,4-2,某医生为了研究一种降血脂新药的临床疗效,按统一纳入标准选择,120,名高血脂患者,采用完全随机设计方法将患者,等分,为,4,组(具体分组方法见例,4-1,),进行双盲试验。,6,周后测得,低密度脂蛋白,作为试验结果,见表,4-3,。问,4,个处理组患者的低密度脂蛋白含量总体均数有无差别,?,表4-3 4,个处理组低密度脂蛋白测量值,(,mmol,/L),三、分析步骤,H,0,:,即4,个试验组,总体均数,相等,H,1,:4,个试验组,总体均数,不全相等,2 .,计算检验统计量,:,1.,建立检验假设,确定检验水准,:,表4-5,完全随机设计方差分析表,列方差分析表,3.,确定,P,值,作出推断结论:,按 水准,拒绝,H,0,,,接受,H,1,,,认为,4,个试验组,ldl,-c,总体均数不相等,即不同剂量药物对血脂中,ldl,-c,降低影响有差别。,注意:,方差分析的结果拒绝,H,0,,,接受,H,1,,,不能说明各组总体均数间两两都有差别。如果要分析哪些两组间有差别,可进行多个均数间的多重比较(见本章第六节)。当,g,=2,时,完全随机设计方差分析与成组设计资料的,t,检验等价,有 。,第三节,随机区组设计资料的方差分析,一、随机区组设计,配伍组设计,(randomized block design),随机区组设计,(randomized block design),又称为,配伍组设计,是配对设计的扩展,。具体做法是:先按影响试验结果的,非处理因素,(如性别、体重、年龄、职业、病情、病程等)将受试对象配成区组,(block),,,再分别将各区组内的受试对象随机分配到各处理或对照组。,(1,)随机分组方法,:,(,2,)随机区组设计的特点,随机分配的次数要重复多次,每次随机分配都对同一个区组内的受试对象进行,且各个处理组受试对象数量相同。,区组内均衡,。,在进行统计分析时,将区组变异离均差平方和从完全随机设计的组内离均差平和中分离出来,从而,减小组内离均差平方和,(误差平方和),提高了统计检验效率。,例,4-3,如何按随机区组设计,分配,5,个区组的,15,只小白鼠接受甲、乙、丙三种抗癌药物?,分组方法,:,先将小白鼠按体重编号,,体重,相近的,3,只小白鼠配成一个区组,见表,4-6,。在随机数字表中任选一行一列开始的,2,位数作为,1,个随机数,如从,第,8,行第,3,列,开始纪录,见表,4-6,;在每个区组内将随机数按大小排序;,各区组中内,序号为,1,的接受,甲药,、序号为,2,的接受,乙药,、序号为,3,的接受,丙药,,分配结果见表,4-6,。,(,3,)统计方法选择,:,1.,正态分布且方差齐同的资料,应采用两因素(处理、配伍)方差分析,(,two-way,ANOVA,),或配对,t,检验(,g,=2,);,2.,当不满足方差分析和,t,检验条件时,可对数据进行变换或采用随机区组设计资料的,Friedman,M,检验。,表,4-7,随机区组设计的试验结果,二、变异分解,(1),总变异:,反映所有观察值之间的变异,记为,SS,总,。,(2),处理间变异:,由处理因素的不同水平作用和随机误差产生的变异,记为,SS,处理,。,(3),区组间变异:,由不同区组作用和随机误差产生的变异,记为,SS,区组,.,(4),误差变异:,完全由随机误差产生的变异,记为,SS,误差,。,对总离均差平方和及其自由度的分解,有,:,表,4-8,随机区组设计资料的方差分析表,三、分析步骤,例,4-4,某研究者采用随机区组设计进行实验,比较三种抗癌药物对小白鼠肉瘤抑瘤效果,先将,15,只染有肉瘤小白鼠按体重大小配成,5,个区组,每个区组内,3,只小白鼠随机接受三种抗癌药物(具体分配方法见例,4-3,),以肉瘤的重量为指标,试验结果见表,4-9,。问三种不同的药物的抑瘤效果有无差别?,表,4-9,不同药物作用后小白鼠肉瘤重量,(,g),H,0,: ,,即三种不同药物作用后,小白鼠肉瘤重量的,总体均数相等,H,1,:,三种不同药物作用后小白鼠肉瘤重,量的,总体均数不全相等,据,1,=2,、,2,=8,查附表,3,的,F,界值表,得,在,=0.05,的水准上,拒绝,H,0,,,接受,H,1,,,认为三种不同药物作用后小白鼠肉瘤重量的总体均数不全相等,即不同药物的抑瘤效果有差别。同理可对区组间的差别进行检验。,注意:,方差分析的结果拒绝,H,0,,,接受,H,1,,,不能说明各组总体均数间两两都有差别。如果要分析哪些两组间有差别,可进行多个均数间的多重比较(见本章第六节)。当,g,=2,时,随机区组设计方差分析与配对设计资料的,t,检验等价,有 。,随机区组设计确定区组因素应是对试验结果有影响的非处理因素。区组内各试验对象应均衡,区组之间试验对象具有较大的差异为好,这样利用区组控制非处理因素的影响,并在方差分析时将区组间的变异从组内变异中分解出来。,因此,当区组间差别有统计学意义时,这种设计的误差比完全随机设计小,试验效率得以提高。,第四节,拉丁方设计资料的方差分析,(不讲,),第五节,两阶段交叉设计资料的方差分析,(不讲),第六节,多个样本均数间的多重比较,(,multiple comparison,),多重比较不能用两样本均数比较的,t,检验,!,若用两样本均数比较的,t,检验进行多重比较,将会加大犯,类错误(把本无差别的两个总体均数判为有差别)的概率。,例如,有,4,个样本均数,两两组合数为 ,若用,t,检验做,6,次比较,且每次比较的检验水准定为,=0.05,,则每次比较,不犯,类错误,的概率为(,1,0.05,),,6,次均不犯,类错误的概率为 ,这时,总的检验水准变为 ,远比,0.05,大。因此,样本均数间的多重比较不能用两样本均数比较的,t,检验。,适用条件,:,当方差分析的结果为拒绝,H,0,,,接受,H,1,时,只说明,g,个总体均数不全相等。若想进一步了解哪些两个总体均数不等,需进行多个样本均数间的两两比较或称多重比较,。,一、,LSD-,t,检验,(,least significant difference,),适用范围:一对或几对在专业上有特殊,意义的样本均数间的比较。,检验统计量,t,的计算公式为,式中,注意:,例,4-7,对例,4-2,资料,问高血脂患者的降血脂新药,2.4,g,组、,4.8,g,组、,7.2,g,组与安慰剂组的低密度脂蛋白含量总体均数有无差别?,,,即降血脂新药,2.4g,组与安慰剂,组的低密度脂蛋白含量总体均数相等,,,即降血脂新药,2.4g,组与安慰剂,组的低密度脂蛋白含量总体均数不等,=0.05,降血脂新药,2.4g,组与安慰剂组的比较:,新药,4.8g,组,VS,安慰剂组,: LSD-,t,为,-4.29,7.2g,组,VS,安慰剂组,: LSD-,t,为,-8.59,。,同理:,按 水准,降血脂新药,4.8g,组、,7.2g,组与安慰剂组间差别有统计学意义。,二、,Dunnett,-,t,检验,适用条件:,g,-1,个实验组与一个对照组均数差别的多重比较,检验统计量为,t,,,亦称,t,检验。,式中,计算公式为,:,Dunnett,-,例,4-8,对例,4-2,资料,问高血脂患者的三个不同剂量降血脂新药组与安慰剂组的低密度脂蛋白含量总体均数是否有差别?,H,0,:,i,=,0,,,即,各实验组,与,安慰剂组,的低密度,脂蛋白含 量总体均数相等,H,1,:,i,0,,,即各实验组与安慰剂组的低密度,脂蛋白含量总体均数不等,=0.05,Dunnett,-,Dunnett,-,Dunnett,-,三、,SNK-,q,检验,(,Student-Newman-,Keuls,),适用于多个样本均数两两之间的全面比较。,检验统计量,q,的计算公式为,例,4-9,对例,4-4,资料,问三种不同药物的抑瘤效果两两之间是否有差别?,H,0,:,A,=,B,,,即任两对比较组的总体均数相等,H,1,:,A,B,,,即任两对比较组的总体均数不相等,=0.05,将三个样本均数由小到大排列,并编组次:,列出对比组,并计算两对比组的均数之差,写出,两对比组包含的组数,a,。,已知,=8,和,a,,,查附表,4,的,q,界值,,,得出相应的,q,界值。,以,实际的,q,值,和,相应的,q,界值,作比较,确定对应的,P,值,。,表4-15,多个均数两两比较值,结论:,可认为,A,药和,B,药、,C,药的抑瘤,效果有差别,还不能认为,B,药和,C,药的,抑瘤效果有差别。,第七节,多样本方差比较的,Bartlett,检验和,Levene,检验,在进行方差分析时要求所对比的各组即各样本的总体方差必须是相等的,这一般需要在作方差分析之前,先对资料的的方差齐性进行检验,特别是在样本方差相差悬殊时,应注意这个问题。,对两样本方差进行齐性检验的方法前已介绍。本节介绍多样本(也适用于两样本)方差齐性检验的,Bartlett,检验法,和,Levene,检验法,。,一、,Bartlett,检验,表4-17 例4-2,的方差齐性检验表,二、,Levene,检验,资料要求:可不具有正态性。,检验统计量:,F,计算公式:,F,式中,检验步骤:,第四章练习题,一、最佳选择题,全做,二、计算分析题,第,1,、,3,、,7,题,谢谢大家!,
展开阅读全文