发光二极管和半导体激光器课件

上传人:无*** 文档编号:242855245 上传时间:2024-09-08 格式:PPT 页数:132 大小:8.98MB
返回 下载 相关 举报
发光二极管和半导体激光器课件_第1页
第1页 / 共132页
发光二极管和半导体激光器课件_第2页
第2页 / 共132页
发光二极管和半导体激光器课件_第3页
第3页 / 共132页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,4,),通过深能级的复合,电子和空穴通过深能级复合时,,辐射的光子能量远小于禁带宽度,,发射光的波长远离吸收边。,对于窄带隙材料,要得到可见光是困难的,但对于宽禁带材料,这类发光具有实际意义,例如,,GaP,中的红色发光便是通过深能级的复合发光。,深能级往往还是,造成非辐射复合的根源,,在直接带隙材料中很明显,,实际工作中,往往需要尽量减少深能级,以提高发光效率,。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,5,),激子复合,如果半导体吸收能量小于禁带宽度的光子,电子被从价带激发,但由于库伦作用,仍受到价带中留下空穴的束缚,形成激子,在禁带中形成一系列激子能级。被库伦能束缚在一起的电子,-,空穴对称为激子,激子作为一个整体,可以在晶体内自由运动。,激子是电中性的,激子的运动 不会引起电流,但它是一个能 量系统,可以,把能量以辐射方 式或非辐射方式重新释放,。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,根据束缚程度不同,激子分为两类:,1.,弗伦克尔,(,Frenkel,)激子或,紧束缚激子,:其半径为晶格常数量级。,2.,万尼尔(,Wannier,)激子:电子和空穴,束缚较弱,,二者之间距离远大于晶格常数,。,通常半导体中存在的是万尼尔激子,。,束缚激子,:激子在晶体中的运动可以受到束缚,而不能再自由运动。能束缚激子的有施主、受主、施主,-,受主对和等电子陷阱等。,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,激子能级,(,激子束缚能,),:可以用类氢原子模型来计算。,晶体的相对介电常数,电子和空穴的有效折合质量,氢原子的基态电离能。,电子的有效质量,空穴的有效质量,激子能级是分立的。,n=1:,激子的基态能级;,n=,时,激子能级,=0,,相当于导带底,电子和空穴完全摆脱了束缚。,E,g,导带底,价带顶,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,导带底,价带顶,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,对于自由激子,电子和空穴复合时会把能量释放出来产生光子。,对于直接带隙半导体,自由激子复合发射光子的能量为:,对于间接带隙半导体,自由激子复合发射光子的能量为,吸收或放出能量为,E,p,的,N,个声子,5,),激子复合,E,g,导带底价带顶7.2 辐射复合与非辐射复合 7.2.1 非平衡,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,对于束缚激子,若激子对杂质的结合能为,E,bx,,则其发射光谱的峰值为,是材料和束缚激子中心的,电离能,E,i,的函数。,近年在发光材料的研究中,发现,束缚激子,对发光有重要作用,而且有,很高的发光效率,。,例如,,GaP,中,,Zn-O,对产生的束缚激子引起红色发光,,N,等电子陷阱产生的束缚激子引起绿色发光。这两种发光机制使,GaP,发光二极管的发光效率大大提高,成为,GaP-LED,的主要发光,机构。,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,6,),等电子陷阱复合,等电子杂质,:周期表内与半导体基质原子同族的原子,与基质原子的,价电子数相等,。,等电子陷阱,:由等电子杂质代替晶格基质原子而产生的束缚态。,用等电子杂质代替基质原子不会增加电子或空穴,而是形成电中性中心。例如:,N,就是,GaP,中,P,原子,的等电子杂质。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,产生“陷阱”(束缚态)的原因?,等电子杂质原子与被替位的基质原子之间的,电负性,和,原子半径,等方面都不同,会引起,晶格势场畸变,,因而可以,束缚载流子(电子和空穴)形成带电中心,。如同等电子杂质原子的位置形成陷阱,束缚住电子或空穴。,6,),等电子陷阱复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,如何确定等电子陷阱是电子的束缚态还是空穴的束缚态?,等电子杂质原子和晶格基质原子之间,电负性的大小关系,决定了该等电子陷阱是电子的束缚态还是空穴的束缚态。,等电子杂质的电负性,(,吸收率 导带能级上被电子占据的概率,与辐射跃迁相联系的价带能级被电子占据的概率,粒子数反转分布,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,7.5.2,半导体受激发射的条件,1,)粒子数反转分布,发生粒子数反转分布的条件:准费米能级之差大于禁带宽度。即准费米能级进入导带和价带。,对于注入式半导体激光器,要实现上述条件,必须做到:,1,)半导体材料重掺杂;,2,)外加正,偏压,V,满足,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,7.5.2,半导体受激发射的条件,1,)粒子数反转分布,重,掺杂,GaAs PN,结,激光器能带图,作用区或有源区,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,2,)光学谐振腔,7.5.2,半导体受激发射的条件,开始时,,PN,结有源区内发生自发发射,其中一小部分光子可以作为受激发射的激发源,激发产生更多同样的光子(相干光)。,光学谐振腔:光子在两个平行界面间不断来回反射,被逐渐放大。,辐射集中在,PN,结平面,内。,7.5 半导体激光器2)光学谐振腔7.5.2 半导体受激发,7.5,半导体激光器,3,)振荡的阈值条件,7.5.2,半导体受激发射的条件,激光器存在端面损耗和内部损耗。,只有当光在谐振腔内来回传播一次所得到的光增益大于损耗时,才能形成激光。,增益系数必须达到一定值时, 才开始形成激光。,增益系数,吸收系数,两个端面的反射系数,L,7.5 半导体激光器3)振荡的阈值条件7.5.2 半导体受,7.5,半导体激光器,4,)阈值电流,7.5.2,半导体受激发射的条件,对于,GaAs,结型激光器,提供增益的方法是加,正向电流,。,阈值电流:只有当正向电流增大到使增益系数,g,达到阈值时,才能发生激光。,7.5 半导体激光器4)阈值电流7.5.2 半导体受激发射,课程主要内容:,第一章 半导体光电材料概述,第二章 半导体物理基础,第三章,PN,结,第四章 金属,-,半导体结,第五章 半导体异质结构,第六章 半导体太阳能电池和光电二极管,第七章 发光二极管和半导体激光器,第八章 量子点生物荧光探针,课程主要内容:第一章 半导体光电材料概述,第八章 量子点生物荧光探针,第八章 量子点生物荧光探针,量子点的光学特性:,量子限制效应,能级分立,带隙展宽,块体材料,大小不同的量子点,单个分子,PbS,量子点带隙随尺寸的变化,ACS Nano,3, 3023,(,2009,),量子点的光学特性: 量子限制效应能级分立,带隙展宽块体,CdS,CdSe/ZnS,量子点的光学特性:,随量子点尺寸减小,吸收、发光峰蓝移。,CdSCdSe/ZnS 量子点的光学特性:随量子点尺寸减小,,量子点生物荧光探针,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针生物荧光探针概述,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针,生物荧光探针概述 量子点生物荧光探针,生物荧光探针概述,在生命科学中,,荧光光谱学,主要通过研究分析生物大分子本身具有的荧光发色团或通过标记的外源荧光发色团,结合各种有关的荧光方法和技术来获得生物大分子结构、功能、相互作用等信息。,从艾滋病病毒检测到人类基因组的测序,从蛋白质溶液构象到细胞内部活动的研究等都广泛地用到荧光探针。,通常使用,有机荧光染料分子,作为荧光探针,如罗丹明等。,生物荧光探针概述在生命科学中,荧光光谱学主要通过研究分析生物,Medintz et al., Nature Materials, 4, 435 (2005),各种,荧光量子点,作为生物荧光探针,生物荧光探针概述,Medintz et al., Nature Materia,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针,生物荧光探针概述 量子点生物荧光探针,Medintz et al., Nature Materials, 4, 435 (2005),CdSe/ZnS,量子点,发射光谱宽度窄,发光峰位可调。,有机荧光染料,荧光量子点,量子点相对于传统有机染料荧光 探针的优势,Medintz et al., Nature Materia,量子点荧光强度高于有机荧光染料,Alexa,X. Wu et al., Nature Biotechnology, 21,41 (2003),Alexa,染料和荧光量子点的荧光强度对比,(,Alexa,染料在已知的有机染料中的荧光强度是最高的),量子点相对于传统有机染料荧光 探针的优势,量子点荧光强度高于有机荧光染料AlexaX. Wu et a,量子点荧光稳定性优于有机荧光染料,Alexa,X. Wu et al., Nature Biotechnology, 21,41 (2003),红色区域:用荧光量子点标记。,绿色区域:用有机荧光染料,Alexa,标记。,(,Alexa,染料在已知的有机染料中的光稳定性是最高的),量子点相对于传统有机染料荧光 探针的优势,量子点荧光稳定性优于有机荧光染料AlexaX. Wu et,量子点相对于传统有机染料荧光 探针的优势,量子点相对于传统有机染料荧光 探针的优势,量子点生物荧光探针,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针生物荧光探针概述,量子点对蛋白质、核酸等生物大分子的标记和检测,量子点最初用于生物领域是应用于简单的生物大分子。,量子点具有优越的荧光特性及合适的空间尺度,结合荧光光谱、荧光偏振、能量转移等技术和方法,量子点在,研究生物大分子的结构、功能与相互作用,等方面的研究中具有一定优势。,量子点对蛋白质、核酸等生物大分子的标记和检测量子点最初用于生,W. J. Parak et al., Chem Mater, 14, 2113 (2002),硅氧烷层,生物大分子,如:,DNA,双功能交联剂,亲水性稳定基团,官能团,CdSe,ZnS,可与生物分子反应的功能性基团,量子点与生物大分子的共价偶联,量子点对蛋白质、核酸等生物大分子的标记和检测,研究表明,与单链或双链,DNA,共价链接后,,量子点的光学性质没有改变,而荧光稳定性增强,。,W. J. Parak et al., Chem Mater,量子点对蛋白质、核酸等生物大分子的标记和检测,在,荧光原位杂交技术,中,,将与,DNA,偶联的量子点作为探针,,可以检测分析人类的中期染色体。,Nucl. Acids Res,. 32, e28 (2004),在,荧光免疫,方面,,S. Wang,等人分别将发射红光和绿光的,CdTe,量子点偶联到,抗原和抗体,上,二者混合后,通过荧光共振能量转移,,观察到免疫反应的进行,。,Nano Lett,. 2, 817 (2002),红光,绿光,量子点对蛋白质、核酸等生物大分子的标记和检测在荧光原位杂交技,量子点生物荧光探针,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针生物荧光探针概述,量子点对生物组织和细胞的标记与成像,用量子点标记细胞并成像的方法来观察,细胞的活动,。,用不同颜色的量子点,同时观测活细胞表面或内部的细胞器、胞内组分的运动和迁移,,研究它们在细胞内部的生物功能是如何实现的,以及它们之间的相互关系。,量子点对生物组织和细胞的标记与成像用量子点标记细胞并成像的方,标记酵母细胞与成像,M. Xie et al., Chem Commun., 44, 5518 (2005),CdSe/ZnS,核壳结构量子点,羧甲基壳聚糖,壳聚糖,是一种天然多糖,具有许多十分重要的生物学性质,如生物相容性、生物降解性和生物活性,在生物医药领域具有十分广阔的应用前景。,量子点对生物组织和细胞的标记与成像,标记酵母细胞与成像M. Xie et al., Chem,M. Xie et al., Chem Commun., 44, 5518 (2005),标记酵母细胞与成像,用,CdSe/ZnS,核壳结构量子点标记羧甲基壳聚糖作为探针用于酵母细胞成像,量子点对生物组织和细胞的标记与成像,M. Xie et al., Chem Commun., 4,对同一细胞中不同细胞器的标记与成像,H. J. Tanke et al., Curr Opin Biotech, 16, 49 (2005),绿色,荧光量子点标记微管,,橙黄色,量子点标记高尔基体,,红色,量子点标记细胞核。单一波长激光激发后,三种颜色同时显现。,量子点对生物组织和细胞的标记与成像,对同一细胞中不同细胞器的标记与成像H. J. Tanke,Medintz et al., Nature Materials, 4, 435 (2005),对同一细胞中不同细胞器的标记与成像,青色,:,细胞核;,紫色,:,Ki-67,蛋白;,橙黄色,:线粒体;,绿色,:微管;,红色,:肌动蛋白纤维。,量子点对生物组织和细胞的标记与成像,Medintz et al., Nature Materia,包覆共聚物的结构决定标记细胞的位置,H. W. Duan,et al., JACS, 129, 3333 (2007),一个,PEI,与四个,PEG,形成的共聚物包覆的量子点标记到细胞核的微管中。,一个,PEI,和两个,PEG,形成的共聚物包覆的量子点标记到细胞浆上。,量子点对生物组织和细胞的标记与成像,PEG:,聚乙二醇,PEI:,聚乙二胺,t=0,t=0,t=12h,t=12h,包覆共聚物的结构决定标记细胞的位置H. W. Duan,量子点生物荧光探针,生物荧光探针概述,量子点,V.S.,传统有机染料荧光探针,量子点对生物大分子的标记和检测,量子点对生物组织和细胞的标记与成像,红外荧光量子点用于活体医学成像,量子点生物荧光探针生物荧光探针概述,红外荧光量子点用于活体医学成像,体内标记要求生物体组织对于所使用的激发光及量子点的发射光波长吸收及散射都尽量少。,可见光最多只能穿透毫米级厚度的组织,而,近红外光则可穿透厘米级的组织,。,将在,近红外区(,700-900nm,),发光的量子点标记到活体内,并用红外光激发,就可以通过成像检测的方法来分析研究组织内部的情况,达到疾病诊断的目的。,红外荧光量子点用于活体医学成像体内标记要求生物体组织对于所,例如:前哨淋巴结(,SLN,)活检是判断肿瘤是否扩散的重要环节,用红外荧光量子点可准确进行手术定位,避免大量盲目切除。,Kim et al., Nat Biotechnol, 22, 93 (2004),红外荧光量子点用于活体医学成像,皮下注射量子点前,注射后,30,秒,注射后,4,分钟,准确切除前哨淋巴结,例如:前哨淋巴结(SLN)活检是判断肿瘤是否扩散的重要环节,,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,4,),通过深能级的复合,电子和空穴通过深能级复合时,,辐射的光子能量远小于禁带宽度,,发射光的波长远离吸收边。,对于窄带隙材料,要得到可见光是困难的,但对于宽禁带材料,这类发光具有实际意义,例如,,GaP,中的红色发光便是通过深能级的复合发光。,深能级往往还是,造成非辐射复合的根源,,在直接带隙材料中很明显,,实际工作中,往往需要尽量减少深能级,以提高发光效率,。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,5,),激子复合,如果半导体吸收能量小于禁带宽度的光子,电子被从价带激发,但由于库伦作用,仍受到价带中留下空穴的束缚,形成激子,在禁带中形成一系列激子能级。被库伦能束缚在一起的电子,-,空穴对称为激子,激子作为一个整体,可以在晶体内自由运动。,激子是电中性的,激子的运动 不会引起电流,但它是一个能 量系统,可以,把能量以辐射方 式或非辐射方式重新释放,。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,根据束缚程度不同,激子分为两类:,1.,弗伦克尔,(,Frenkel,)激子或,紧束缚激子,:其半径为晶格常数量级。,2.,万尼尔(,Wannier,)激子:电子和空穴,束缚较弱,,二者之间距离远大于晶格常数,。,通常半导体中存在的是万尼尔激子,。,束缚激子,:激子在晶体中的运动可以受到束缚,而不能再自由运动。能束缚激子的有施主、受主、施主,-,受主对和等电子陷阱等。,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,激子能级,(,激子束缚能,),:可以用类氢原子模型来计算。,晶体的相对介电常数,电子和空穴的有效折合质量,氢原子的基态电离能。,电子的有效质量,空穴的有效质量,激子能级是分立的。,n=1:,激子的基态能级;,n=,时,激子能级,=0,,相当于导带底,电子和空穴完全摆脱了束缚。,E,g,导带底,价带顶,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,导带底,价带顶,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,对于自由激子,电子和空穴复合时会把能量释放出来产生光子。,对于直接带隙半导体,自由激子复合发射光子的能量为:,对于间接带隙半导体,自由激子复合发射光子的能量为,吸收或放出能量为,E,p,的,N,个声子,5,),激子复合,E,g,导带底价带顶7.2 辐射复合与非辐射复合 7.2.1 非平衡,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,对于束缚激子,若激子对杂质的结合能为,E,bx,,则其发射光谱的峰值为,是材料和束缚激子中心的,电离能,E,i,的函数。,近年在发光材料的研究中,发现,束缚激子,对发光有重要作用,而且有,很高的发光效率,。,例如,,GaP,中,,Zn-O,对产生的束缚激子引起红色发光,,N,等电子陷阱产生的束缚激子引起绿色发光。这两种发光机制使,GaP,发光二极管的发光效率大大提高,成为,GaP-LED,的主要发光,机构。,5,),激子复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,6,),等电子陷阱复合,等电子杂质,:周期表内与半导体基质原子同族的原子,与基质原子的,价电子数相等,。,等电子陷阱,:由等电子杂质代替晶格基质原子而产生的束缚态。,用等电子杂质代替基质原子不会增加电子或空穴,而是形成电中性中心。例如:,N,就是,GaP,中,P,原子,的等电子杂质。,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,产生“陷阱”(束缚态)的原因?,等电子杂质原子与被替位的基质原子之间的,电负性,和,原子半径,等方面都不同,会引起,晶格势场畸变,,因而可以,束缚载流子(电子和空穴)形成带电中心,。如同等电子杂质原子的位置形成陷阱,束缚住电子或空穴。,6,),等电子陷阱复合,7.2 辐射复合与非辐射复合 7.2.1 非平衡载流子的辐射,7.2,辐射复合与非辐射复合,7.2.1,非平衡载流子的辐射复合,如何确定等电子陷阱是电子的束缚态还是空穴的束缚态?,等电子杂质原子和晶格基质原子之间,电负性的大小关系,决定了该等电子陷阱是电子的束缚态还是空穴的束缚态。,等电子杂质的电负性,(,吸收率 导带能级上被电子占据的概率,与辐射跃迁相联系的价带能级被电子占据的概率,粒子数反转分布,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,7.5.2,半导体受激发射的条件,1,)粒子数反转分布,发生粒子数反转分布的条件:准费米能级之差大于禁带宽度。即准费米能级进入导带和价带。,对于注入式半导体激光器,要实现上述条件,必须做到:,1,)半导体材料重掺杂;,2,)外加正,偏压,V,满足,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,7.5.2,半导体受激发射的条件,1,)粒子数反转分布,重,掺杂,GaAs PN,结,激光器能带图,作用区或有源区,7.5 半导体激光器7.5.2 半导体受激发射的条件1)粒,7.5,半导体激光器,2
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!