数学--3.1.2《复数的几何意义》ppt课件(新人教版选修1-2)

上传人:94****0 文档编号:241746624 上传时间:2024-07-20 格式:PPT 页数:17 大小:472.14KB
返回 下载 相关 举报
数学--3.1.2《复数的几何意义》ppt课件(新人教版选修1-2)_第1页
第1页 / 共17页
数学--3.1.2《复数的几何意义》ppt课件(新人教版选修1-2)_第2页
第2页 / 共17页
数学--3.1.2《复数的几何意义》ppt课件(新人教版选修1-2)_第3页
第3页 / 共17页
点击查看更多>>
资源描述
3.1.2复数的几何意义3.1.2复数的几何意义教学目标教学目标理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。教学重点教学重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。教学难点教学难点:根据复数的代数形式描出其对应的点及向量。教学目标理解复数与复平面内的点、平面向量是一一对应的,能根据在几何上,在几何上,我们用什么我们用什么来表示实数来表示实数?想一想?想一想?实数的几何意义实数的几何意义类比类比实数的实数的表示,可以表示,可以用什么来表用什么来表示复数?示复数?实数可以用实数可以用数轴数轴上的点来表示。上的点来表示。实数实数 数轴数轴上的点上的点(形形)(数数)一一对应一一对应 在几何上,我们用什么来表示实数?想一想?实数的几何意义类比实回忆回忆复数的一般形式?Z=a+bi(a,b R)实部!虚部!一个复数一个复数由什么唯由什么唯一确定?一确定?回忆复数的一般形式?Z=a+bi(a,bR)实部!虚部复数复数z=a+bi有序实数对有序实数对(a,b)直角坐标系中的点直角坐标系中的点Z(a,b)xyobaZ(a,b)建立了平面直角建立了平面直角坐标系来表示复数的坐标系来表示复数的平面平面x轴轴-实轴实轴y轴轴-虚轴虚轴(数)(数)(形)(形)-复数平面复数平面 (简称简称复平面复平面)一一对应一一对应z=a+bi复数的几何意义(一)复数的几何意义(一)复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,(A)在复平面内,对应于实数的点都在实在复平面内,对应于实数的点都在实 轴上;轴上;(B)在复平面内,对应于纯虚数的点都在在复平面内,对应于纯虚数的点都在 虚轴上;虚轴上;(C)在复平面内,实轴上的点所对应的复在复平面内,实轴上的点所对应的复 数都是实数;数都是实数;(D)在复平面内,虚轴上的点所对应的复在复平面内,虚轴上的点所对应的复 数都是纯虚数。数都是纯虚数。例例1.辨析:辨析:1下列命题中的假命题是(下列命题中的假命题是()D(A)在复平面内,对应于实数的点都在实例1.辨析:1下列命 2“a=0”是是“复数复数a+bi(a,bR)是是纯虚数纯虚数”的(的()。)。(A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件(C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件C 3“a=0”是是“复数复数a+bi(a,bR)所所对应的点在虚轴上对应的点在虚轴上”的(的()。)。(A)必要不充分条件必要不充分条件 (B)充分不必要条件充分不必要条件(C)充要条件充要条件 (D)不充分不必要条件不充分不必要条件A 2“a=0”是“复数a+bi(a,例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于第二象限,求实数m m允许的取值范围。允许的取值范围。表示复数的点所表示复数的点所在象限的问题在象限的问题复数的实部与虚部所满复数的实部与虚部所满足的不等式组的问题足的不等式组的问题转化转化(几何问题几何问题)(代数问题代数问题)一种重要的数学思想:一种重要的数学思想:数形结合思想数形结合思想例2 已知复数z=(m2+m-6)+(m2+m-2)i 在变式一:变式一:已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内在复平面内所对应的点在直线所对应的点在直线x-2y+4=0 x-2y+4=0上,求实数上,求实数m m的值。的值。解:复数复数z=(m2+m-6)+(m2+m-2)i在复平面在复平面内所对应的点是(内所对应的点是(m2+m-6,m2+m-2),),(m2+m-6)-2(m2+m-2)+4=0,m=1或或m=-2。变式一:已知复数z=(m2+m-6)+(m2+m-2)i 在复例例2 2 已知复数已知复数z=(mz=(m2 2+m-6)+(m+m-6)+(m2 2+m-2)i+m-2)i在复平面内所在复平面内所对应的点位于第二象限,求实数对应的点位于第二象限,求实数m m允许的取值范围。允许的取值范围。变式二:变式二:证明对一切证明对一切m m,此复数所对应的点不可能,此复数所对应的点不可能位于第四象限。位于第四象限。不等式解集为空集不等式解集为空集所以复数所对应的点不可能位于第四象限所以复数所对应的点不可能位于第四象限.小结例2 已知复数z=(m2+m-6)+(m2+m-2)i 在复数复数z=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)一一对应一一对应平平面面向向量量一一对应一一对应一一对应一一对应复数的几何意义(二)复数的几何意义(二)xyobaZ(a,b)z=a+bi小结复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量xOz=a+biy复数的绝对值复数的绝对值(复数的模复数的模)的的几何意义几何意义:Z(a,b)对应平面向量对应平面向量 的模的模|,即,即复数复数 z=z=a+bi i在复平面上对应的点在复平面上对应的点Z(a,b)到原点的到原点的距离。距离。|z|=|小结xOz=a+biy复数的绝对值(复数的模)的几何意义:Z(例例3 求下列复数的模:求下列复数的模:(1)z1=-5i (2)z2=-3+4i (3)z3=5-5i(2)(2)满足满足|z|=5(zC)|z|=5(zC)的的z z值有几个?值有几个?思考:思考:(1)(1)满足满足|z|=5(zR)|z|=5(zR)的的z z值有几个?值有几个?(4)z4=1+mi(mR)(5)z5=4a-3ai(a0)这些复这些复 数对应的点在复平面上构成怎样的图形数对应的点在复平面上构成怎样的图形?小结 例3 求下列复数的模:(2)满足|z|=5(zC)的zxyO设设z=x+yi(x,yR)z=x+yi(x,yR)满足满足|z|=5(zC)|z|=5(zC)的的复数复数z z对应的点在复对应的点在复平面上将构成怎样平面上将构成怎样的图形?的图形?5555xyO设z=x+yi(x,yR)满足|z|=5(zC)的小结小结:复数的几何意义是什么?小结:复数的几何意义是什么?复数复数z=a+bi直角坐标系中的点直角坐标系中的点Z(a,b)一一对应一一对应平平面面向向量量一一对应一一对应一一对应一一对应复数的几何意义复数的几何意义比一比?比一比?复数还有哪复数还有哪些特征能和些特征能和平面向量类平面向量类比比?复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量再见
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!