资源描述
引言引言 在现实生活中,我们常常会遇到与二次函数及其图象有关的问题。如:被抛射出去的物体沿抛物线轨道飞行;抛物线形拱桥的跨度、拱高的计算等利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,我将和同学们共同研究解决这些问题的方法,探寻其中的奥秘。复习复习.1、一元二次方程、一元二次方程ax2+bx+c=0的根的情的根的情况可由况可由 确定。确定。0 0=0=0 0 0有两个不相等的实数根有两个不相等的实数根有两个相等的实数根有两个相等的实数根没有实数根没有实数根b2-4ac2、在式子、在式子h=50-20t2中,如果中,如果h=15,那么,那么 50-20t2=,如果,如果h=20,那,那50-20t2=,如果如果h=0,那,那50-20t2=。如果要想求。如果要想求t的值,那么我的值,那么我 们可以求们可以求 的解。的解。15200方程问题问题1:1:如图如图,以以 40 40 m/sm/s的速度将小球沿与地面成的速度将小球沿与地面成 3030度角度角的方向击出时的方向击出时,球的飞行路线是一条抛物线球的飞行路线是一条抛物线,如果不考虑空气如果不考虑空气阻力阻力,球的飞行高度球的飞行高度 h(h(单位单位:m):m)与飞行时间与飞行时间 t(t(单位单位:s):s)之之间具有关系间具有关系:h=20 t 5 th=20 t 5 t2 2 考虑下列问题考虑下列问题:(1)(1)球的飞行高度能否达到球的飞行高度能否达到 15 m?15 m?若能若能,需要多少时间需要多少时间?(2)(2)球的飞行高度能否达到球的飞行高度能否达到 20 m?20 m?若能若能,需要多少时间需要多少时间?(3)(3)球的飞行高度能否达到球的飞行高度能否达到 20.5 m?20.5 m?若能若能,需要多少时间需要多少时间?(4)(4)球从球从 飞出到落地飞出到落地 要用多少时间要用多少时间?15=20 t 5 t2h=0h t20=20 t 5 t220.5=20 t 5 t20=20 t 5 t2解解:(:(1)解方程)解方程15=20t-5t2 即:即:t2-4t+3=0 t1=1,t2=3 当球飞行当球飞行1s和和3s时,它的高度为时,它的高度为15m。(2)解方程)解方程20=20t-5t2 即:即:t2-4t+4=0 t1=t2=2 当球飞行当球飞行2s时,它的高度为时,它的高度为20m。(3)解方程)解方程20.5=20t-5t2 即:即:t2-4t+4.1=0 因为因为(-4)2-44.10,所以方程无解,所以方程无解,球的飞行高度达不到球的飞行高度达不到20.5m。(4)解方程)解方程0=20t-5t2 即:即:t2-4t=0 t1=0,t2=4 球的飞行球的飞行0s和和4s时,它的高度为时,它的高度为0m。即。即 飞出到落地用了飞出到落地用了4s 。你能结合图你能结合图形指出为什形指出为什么在两个时么在两个时间球的高度间球的高度为为15m吗?吗?那么为什么那么为什么只在一个时只在一个时间求得高度间求得高度为为20m呢?呢?那么为什么那么为什么两个时间球两个时间球的高度为零的高度为零呢?呢?从上面我们看出,从上面我们看出,对于二次函对于二次函数数h=20 t 5 t2中,已知中,已知h的值,求时的值,求时间间t?其实就是把函数值其实就是把函数值h h换成换成常数常数,求一元二次方程的解。求一元二次方程的解。那么从上面,二次函数那么从上面,二次函数y=axy=ax2 2+bx+c+bx+c何时为何时为一元二次方程一元二次方程?它们的关系如何它们的关系如何?一般地,当一般地,当y取定值时,二次函数为一元取定值时,二次函数为一元二次方程。二次方程。如:如:y=5时,则时,则5=ax2+bx+c就就是一个一元二次方程。是一个一元二次方程。为一个常数为一个常数(定值)(定值)练习一:练习一:如图设水管如图设水管AB的高出地面的高出地面2.5m,在,在B处有一自动旋处有一自动旋转的喷水头,转的喷水头,喷出的水呈抛物线状,可用二次函数喷出的水呈抛物线状,可用二次函数喷出的水呈抛物线状,可用二次函数喷出的水呈抛物线状,可用二次函数y=-0.5xy=-0.5x2 2+2x+2.5+2x+2.5描述,在所有的直角坐标系中,求描述,在所有的直角坐标系中,求描述,在所有的直角坐标系中,求描述,在所有的直角坐标系中,求水流的落地点水流的落地点水流的落地点水流的落地点D D到到到到A A的距离是多少?的距离是多少?的距离是多少?的距离是多少?解:根据题意得解:根据题意得-0.5x-0.5x2 2+2x+2.5+2x+2.5=0,解得解得解得解得x x1 1=5=5,x x2 2=-1(=-1(不合题意舍去不合题意舍去不合题意舍去不合题意舍去)答:水流的落地点答:水流的落地点答:水流的落地点答:水流的落地点D D到到到到A A的距离是的距离是的距离是的距离是5m5m。分析:根据图象可知,分析:根据图象可知,水流的水流的水流的水流的落地点落地点落地点落地点D D的纵坐标为的纵坐标为的纵坐标为的纵坐标为0 0,横坐,横坐,横坐,横坐标即为落地点标即为落地点标即为落地点标即为落地点D D到到到到A A的距离。的距离。的距离。的距离。即:即:即:即:y=0 y=0 。想一想,这一个旋转喷水想一想,这一个旋转喷水头,水流落地覆盖的最大头,水流落地覆盖的最大面积为多少呢?面积为多少呢?1、二次函数、二次函数y=x2+x-2,y=x2-6x+9,y=x2 x+1的图象如图所示。的图象如图所示。(1).每个图象与每个图象与x轴有几个交点?轴有几个交点?(2).一元二次方程一元二次方程?x2+x-2=0,x2-6x+9=0有几个根有几个根?验证一下一元二次方程验证一下一元二次方程x2 x+1=0有根吗有根吗?(3).二次函数二次函数y=ax2+bx+c的图象和的图象和x轴交点的坐标与轴交点的坐标与 一元二次方程一元二次方程ax2+bx+c=0的根有什么关系的根有什么关系?答:答:2个,个,1个,个,0个个边观察边思考边观察边思考分析分析b2 4ac 0b2 4ac=0b2 4ac 0OXY2、二次函数、二次函数y=ax2+bx+c的图象和的图象和x轴交轴交点点,则则b2-4ac的情况如何。的情况如何。.二次函数与一元二次方程的关系(1)如果抛物线)如果抛物线y=ax2+bx+c与与x轴有公共轴有公共点,公共点的横坐标是点,公共点的横坐标是x0,那么当那么当x=x0时,函时,函数值为数值为0,因此,因此x=x0就是方程就是方程y=ax2+bx+c的的一个根一个根2 2、二次函数、二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象和x x轴交点轴交点 情况如何?(情况如何?(b b2 2-4ac-4ac如何)如何)二次函数与一元二次方程b2 4ac 0b2 4ac=0b2 4ac0,0,c0时时,图象与图象与x轴交点情况是轴交点情况是()A 无交点无交点 B 只有一个交点只有一个交点 C 有两个交点有两个交点 D不能确定不能确定CX1=0,x2=55.如图如图,抛物线抛物线y=ax2+bx+c的对称轴是直线的对称轴是直线 x=-1,由由图象知图象知,关于关于x的方程的方程ax2+bx+c=0的两个根分别是的两个根分别是x1=1.3,x2=6.已知抛物线已知抛物线y=kx2-7x-7的图象和的图象和x轴有交点,则轴有交点,则 k的取值范围(的取值范围()-3.3BK0b2-4ac05.根据下列表格的对应值根据下列表格的对应值:判断方程判断方程ax2+bx+c=0(a0,a,b,c为常数为常数)一个解一个解x的的范围是范围是()A 3 X 3.23 B 3.23 X 3.24C 3.24 X 3.25 D 3.25 X0b2-4ac 0-4ac 0b b2 2-4ac=0-4ac=0b b2 2-4ac 0-4ac 0结束寄语时间是一个常数,但对勤奋者来说,是一个“变数”.用“分”来计算时间的人比用“小时”来计算时间的人时间多59倍.下课!
展开阅读全文