应用spss进行对数转换教学课件

上传人:痛*** 文档编号:241301121 上传时间:2024-06-16 格式:PPT 页数:36 大小:1.27MB
返回 下载 相关 举报
应用spss进行对数转换教学课件_第1页
第1页 / 共36页
应用spss进行对数转换教学课件_第2页
第2页 / 共36页
应用spss进行对数转换教学课件_第3页
第3页 / 共36页
点击查看更多>>
资源描述
Computing TransformationsTransforming variablesTransformations for normalityTransformations for linearity1Transformations:Transforming variables to satisfy assumptionsWhen a metric variable fails to satisfy the assumption of normality,homogeneity of variance,or linearity,we may be able to correct the deficiency by using a transformation.We will consider three transformations for normality,homogeneity of variance,and linearity:the logarithmic transformationthe square root transformation,and the inverse transformationplus a fourth that may be useful for problems of linearity:the square transformation2Transformations change the measurement scaleIn the diagram to the right,the values of 5 through 20 are plotted on the different scales used in the transformations.These scales would be used in plotting the horizontal axis of the histogram depicting the distribution.When comparing values measured on the decimal scale to which we are accustomed,we see that each transformation changes the distance between the benchmark measurements.All of the transformations increase the distance between small values and decrease the distance between large values.This has the effect of moving the positively skewed values to the left,reducing the effect of the skewing and producing a distribution that more closely resembles a normal distribution.3Transformations:Computing transformations in SPSSIn SPSS,transformations are obtained by computing a new variable.SPSS functions are available for the logarithmic(LG10)and square root(SQRT)transformations.The inverse transformation uses a formula which divides one by the original value for each case.For each of these calculations,there may be data values which are not mathematically permissible.For example,the log of zero is not defined mathematically,division by zero is not permitted,and the square root of a negative number results in an“imaginary”value.We will usually adjust the values passed to the function to make certain that these illegal operations do not occur.4Transformations:Two forms for computing transformationsThere are two forms for each of the transformations to induce normality,depending on whether the distribution is skewed negatively to the left or skewed positively to the right.Both forms use the same SPSS functions and formula to calculate the transformations.The two forms differ in the value or argument passed to the functions and formula.The argument to the functions is an adjustment to the original value of the variable to make certain that all of the calculations are mathematically correct.5Transformations:Functions and formulas for transformationsSymbolically,if we let x stand for the argument passes to the function or formula,the calculations for the transformations are:Logarithmic transformation:compute log=LG10(x)Square root transformation:compute sqrt=SQRT(x)Inverse transformation:compute inv=-1/(x)Square transformation:compute s2=x*xFor all transformations,the argument must be greater than zero to guarantee that the calculations are mathematically legitimate.6Transformations:Transformation of positively skewed variablesFor positively skewed variables,the argument is an adjustment to the original value based on the minimum value for the variable.If the minimum value for a variable is zero,the adjustment requires that we add one to each value,e.g.x+1.If the minimum value for a variable is a negative number(e.g.,6),the adjustment requires that we add the absolute value of the minimum value(e.g.6)plus one(e.g.x+6+1,which equals x+7).7Transformations:Example of positively skewed variableSuppose our dataset contains the number of books read(books)for 5 subjects:1,3,0,5,and 2,and the distribution is positively skewed.The minimum value for the variable books is 0.The adjustment for each case is books+1.The transformations would be calculated as follows:Compute logBooks=LG10(books+1)Compute sqrBooks=SQRT(books+1)Compute invBooks=-1/(books+1)8Transformations:Transformation of negatively skewed variablesIf the distribution of a variable is negatively skewed,the adjustment of the values reverses,or reflects,the distribution so that it becomes positively skewed.The transformations are then computed on the values in the positively skewed distribution.Reflection is computed by subtracting all of the values for a variable from one plus the absolute value of maximum value for the variable.This results in a positively skewed distribution with all values larger than zero.When an analysis uses a transformation involving reflection,we must remember that this will reverse the direction of all of the relationships in which the variable is involved.Our interpretation of relationships must be adjusted accordingly.9Transformations:Example of negatively skewed variableSuppose our dataset contains the number of books read(books)for 5 subjects:1,3,0,5,and 2,and the distribution is negatively skewed.The maximum value for the variable books is 5.The adjustment for each case is 6-books.The transformations would be calculated as follows:Compute logBooks=LG10(6-books)Compute sqrBooks=SQRT(6-books)Compute invBooks=-1/(6-books)10Transformations:The Square Transformation for LinearityThe square transformation is computed by multiplying the value for the variable by itself.It does not matter whether the distribution is positively or negatively skewed.It does matter if the variable has negative values,since we would not be able to distinguish their squares from the square of a comparable positive value(e.g.the square of-4 is equal to the square of+4).If the variable has negative values,we add the absolute value of the minimum value to each score before squaring it.11Transformations:Example of the square transformationSuppose our dataset contains change scores(chg)for 5 subjects that indicate the difference between test scores at the end of a semester and test scores at mid-term:-10,0,10,20,and 30.The minimum score is-10.The absolute value of the minimum score is 10.The transformation would be calculated as follows:Compute squarChg=(chg+10)*(chg+10)12Transformations:Transformations for normalityBoth the histogram and the normality plot for Total Time Spent on the Internet(netime)indicate that the variable is not normally distributed.13Transformations:Determine whether reflection is requiredSkewness,in the table of Descriptive Statistics,indicates whether or not reflection(reversing the values)is required in the transformation.If Skewness is positive,as it is in this problem,reflection is not required.If Skewness is negative,reflection is required.14Transformations:Compute the adjustment to the argumentIn this problem,the minimum value is 0,so 1 will be added to each value in the formula,i.e.the argument to the SPSS functions and formula for the inverse will be:netime+1.15Transformations:Computing the logarithmic transformationTo compute the transformation,select the Compute command from the Transform menu.16Transformations:Specifying the transform variable name and functionFirst,in the Target Variable text box,type a name for the log transformation variable,e.g.“lgnetime“.Second,scroll down the list of functions to find LG10,which calculates logarithmic values use a base of 10.(The logarithmic values are the power to which 10 is raised to produce the original number.)Third,click on the up arrow button to move the highlighted function to the Numeric Expression text box.17Transformations:Adding the variable name to the functionFirst,scroll down the list of variables to locate the variable we want to transform.Click on its name so that it is highlighted.Second,click on the right arrow button.SPSS will replace the highlighted text in the function(?)with the name of the variable.18Transformations:Adding the constant to the functionFollowing the rules stated for determining the constant that needs to be included in the function either to prevent mathematical errors,or to do reflection,we include the constant in the function argument.In this case,we add 1 to the netime variable.Click on the OK button to complete the compute request.19Transformations:The transformed variableThe transformed variable which we requested SPSS compute is shown in the data editor in a column to the right of the other variables in the dataset.20Transformations:Computing the square root transformationTo compute the transformation,select the Compute command from the Transform menu.21Transformations:Specifying the transform variable name and functionFirst,in the Target Variable text box,type a name for the square root transformation variable,e.g.“sqnetime“.Second,scroll down the list of functions to find SQRT,which calculates the square root of a variable.Third,click on the up arrow button to move the highlighted function to the Numeric Expression text box.22Transformations:Adding the variable name to the functionSecond,click on the right arrow button.SPSS will replace the highlighted text in the function(?)with the name of the variable.First,scroll down the list of variables to locate the variable we want to transform.Click on its name so that it is highlighted.23Transformations:Adding the constant to the functionFollowing the rules stated for determining the constant that needs to be included in the function either to prevent mathematical errors,or to do reflection,we include the constant in the function argument.In this case,we add 1 to the netime variable.Click on the OK button to complete the compute request.24Transformations:The transformed variableThe transformed variable which we requested SPSS compute is shown in the data editor in a column to the right of the other variables in the dataset.25Transformations:Computing the inverse transformationTo compute the transformation,select the Compute command from the Transform menu.26Transformations:Specifying the transform variable name and formulaFirst,in the Target Variable text box,type a name for the inverse transformation variable,e.g.“innetime“.Second,there is not a function for computing the inverse,so we type the formula directly into the Numeric Expression text box.Third,click on the OK button to complete the compute request.27Transformations:The transformed variableThe transformed variable which we requested SPSS compute is shown in the data editor in a column to the right of the other variables in the dataset.28Transformations:Adjustment to the argument for the square transformationIn this problem,the minimum value is 0,no adjustment is needed for computing the square.If the minimum was a number less than zero,we would add the absolute value of the minimum(dropping the sign)as an adjustment to the variable.It is mathematically correct to square a value of zero,so the adjustment to the argument for the square transformation is different.What we need to avoid are negative numbers,since the square of a negative number produces the same value as the square of a positive number.29Transformations:Computing the square transformationTo compute the transformation,select the Compute command from the Transform menu.30Transformations:Specifying the transform variable name and formulaFirst,in the Target Variable text box,type a name for the inverse transformation variable,e.g.“s2netime“.Second,there is not a function for computing the square,so we type the formula directly into the Numeric Expression text box.Third,click on the OK button to complete the compute request.31Transformations:The transformed variableThe transformed variable which we requested SPSS compute is shown in the data editor in a column to the right of the other variables in the dataset.32Using the script to compute transformationsWhen the script tests assumptions,it will create the transformations that are checked.If you want to retain the transformed variable to use in an analysis,clear the checkbox that tells the script to delete the transformed variables it created.33The transformed variablesThe transformed variables are added to the data editor.The variable names attempt to identify the transformation in the variable name.The variable labels fully identify the transformation,including the function and formula used to compute it.34Which transformation to useThe recommendation of which transform to use is often summarized in a pictorial chart like the above.In practice,it is difficult to determine which distribution is most like your variable.It is often more efficient to compute all transformations and examine the statistical properties of each.35
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!