乙醇催化重整制氢研究进展课件

上传人:文**** 文档编号:182888079 上传时间:2023-01-28 格式:PPT 页数:47 大小:22.47MB
返回 下载 相关 举报
乙醇催化重整制氢研究进展课件_第1页
第1页 / 共47页
乙醇催化重整制氢研究进展课件_第2页
第2页 / 共47页
乙醇催化重整制氢研究进展课件_第3页
第3页 / 共47页
点击查看更多>>
资源描述
1895一、研究背景一、研究背景热值高热值高能源危机能源危机环境友好环境友好应用广泛应用广泛来源多样来源多样氢氢 能能天然气、煤和石油等化石燃料的日益枯竭天然气、煤和石油等化石燃料的日益枯竭重整制氢、电解水制氢、光重整制氢、电解水制氢、光生物制氢、光解水制氢。生物制氢、光解水制氢。工业上,以工业上,以天然气蒸汽重整天然气蒸汽重整制氢为主。制氢为主。无污染、无碳排放无污染、无碳排放重要的传统化工原料,并且在燃重要的传统化工原料,并且在燃料电池等领域具有广阔发展空间料电池等领域具有广阔发展空间Mattos L V,et al.Chem.Rev.2012,112(7):4094-4123.Huber G W.et al.Science,2003,300(5628):2075-2077.生物质能生物质能生物质能开发与利用生物质能开发与利用生物质发电生物质发电生物材料生物材料石化产品替代品石化产品替代品国家国家“十二五十二五”规划规划生物甲醇生物甲醇生物乙醇生物乙醇生物柴油生物柴油生物甘油生物甘油0.1kg甘油甘油/kg柴油柴油生物质基醇类(生物质基醇类(bio-alcohols)Zhou C H,et al.Chem.Soc.Rev.,2008,37(3):527-549.Alonso D M,et al.Chem.Soc.Rev.,2012,41(24):8075-8098.一、研究背景一、研究背景 Why bio-alcohols?Why steam reforming?产氢效率高产氢效率高工艺成熟工艺成熟常压、中高温常压、中高温反应条件反应条件原料高效利用原料高效利用Steam reformingOnmp2x2298KC H O+H OCO+H H0Mattos L V,et al.Chem.Rev.2012,112(7):4094-4123.Huber G W.et al.Science,2003,300(5628):2075-2077.一、研究背景一、研究背景Basis of Ethanol/Glycerol Steam Reforming C2H5OH+3H2O 2CO2+6H2 RenewableBiodeg-radableLow toxicityHigh vaporis-ation heatEasy handlingSulfur freeSteam reformingFull use of raw materialOn line production of H2Mild reaction conditionsHigh efficiencyEnviron-mentally benign C3H8O3+3H2O 3CO2+7H2 298H=174 kJ/mol298H=127 kJ/molReforming activity on metals C2H5OH+3H2O 2CO2+6H2 Ethanol conversions on supported single-component catalysts at 573 K,60000 h-1 of GHSV,and 1:3 of S/C,diluted in 86%He.Duan&Senken.,Ind Eng Chem Res,2005,44,6381镍基催化剂理性设计镍基催化剂理性设计存在的挑战存在的挑战镍基催化剂具有较大镍基催化剂具有较大的开发潜力,但其存的开发潜力,但其存在易积碳,活性组分在易积碳,活性组分易烧结等问题。易烧结等问题。催化剂性质催化剂性质镍颗粒大小镍颗粒大小金属分散度金属分散度金属与载体相互作用金属与载体相互作用催化剂制备催化剂制备不同镍基前躯体影响不同镍基前躯体影响具有特殊结构的催化具有特殊结构的催化剂前躯体的制备剂前躯体的制备催化剂测试催化剂测试乙醇蒸汽重整乙醇蒸汽重整吸附强化乙醇蒸汽重整吸附强化乙醇蒸汽重整工程放大工程放大催化剂表征催化剂表征XRD、H2-TPR、TEM、XPS、TG,etc.设计和开发高活性和高稳定性的催化剂仍是生物质基醇类制氢工艺亟待解决的关键技术之一。设计和开发高活性和高稳定性的催化剂仍是生物质基醇类制氢工艺亟待解决的关键技术之一。一、研究背景一、研究背景Nickel particle size:Ni/-Al2O3Ni/CeO2Ni/ZrO2ZrO2-Al2O3MgOAcid amount:MgOCeO2ZrO2-Al2O3(A)NH3-TPRS profiles of reduced nickel catalysts;(B)H2-TPR profiles of supported nickel catalysts;(C)XRD patterns of reduced nickel catalysts;(D)Oxygen storage capacity(OSC)tests of pure oxides.Surface Properties of SupportsGong et al.PCCP 2012,14,4066(Cover)Sulfur poisoningSinteringActivityC formationC2H5OHCH3CHOH2C2H4H2OCH3COCH3 CH4 CO,H2CO2,H2H2OMetalAcidAcid+BaseReformingCOCO,H2H2OOOMetalMetalMetalNickel Challenges for Nickel Steam-Reforming catalystsParticle size of Ni metalSurface oxidation activityImprove metal dispersion and nanoconfinement effect to stabilize nickel particlesImprove surface oxygen mobilityActivitySelectivityH2 yieldProcess intensificationSorption enhanced steam reformingImprove Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsImproved Dispersion of Ni:the Journey of Raney NiGong et al.,PCCP 2012,14,3295hydrated aluminumEnhanced dispersion and surface area of Ni;additive metals could tune the selectivityReaction conditions:ethanol feed,3.1h-1,S/C=4Catalysts:Raney Ni reaction conditions:ethanol feed,4.6h-1,350C S/C=4Catalysts:raney Ni reaction conditions:ethanol feed,3.1h-1,S/C=4,350CLT Steam Reforming to Produce CO-Free H205101520253035404550020406080100Time/hConversion or selectivity/%Ethanol conversion H2 selectivity CO2 selectivity CO selectivity CH4 selectivityLow-Temperature Steam Reforming to Produce CO Free HydrogenGong et al.,PCCP 2012,14,3295Improve Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsSupported catalystsPrecursor on dispersionNi(CH3COO)2Ni-ACNi(NO3)2Ni-NNi(C7H7O2)2Ni-AANiCl2Ni-C-Al2O3Influence of Nickel Precursors on Nickel dispersionXRD patterns of the catalysts after 700 C reductionSampleBET surface area/m2 g-1Average pore diameter/nmPore volume/cm3 g-1Ni crystal size of reduced catalysts/nmaAl2O319210.00.56/Ni-AC1589.80.479.4Ni-AA15410.00.4812.5Ni-N14910.20.449.8Ni-C13310.90.4715.7a:Determined by the Scherrer equation from Ni(200)plane of XRD patternsTEM images of the catalysts after reductionNickel particle size:Ni-ACNi-NNi-AANi-NNi-AANi-C coke deposits:Ni-ACNi-NNi-AANi-CTEM images after reactionInfluence on Glycerol Steam Reforming StabilityDifferent nickel Different nickel dispersion and dispersion and reducibilityreducibilityDifferent glycerol steam reforming Different glycerol steam reforming activity and stabilityactivity and stabilityDifferent nickel Different nickel precursorsprecursorsEffect of Nickel Precursors on Glycerol Steam ReformingGong et al.,ACS Sus Chem Eng 2013,doi:10.1021/sc400123fImprove Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsHigh dispersioncatalysts,method to resistsinteringZrOCl2NH4OHN2 dryNanoarchitectural Design of NiZrO2 CatalystConventional Ni/ZrO2Nanoarchitectural Ni-ZrO2Gong et al.,Chem Commun 2013,49,4226Nanoconfinment effect in NiZrO2 catalyst NiZrO2Gong et al.,Chem Commun 2013,49,4226ESR activity and stability(a)Catalytic activity at 723 K.Solid symbols:NiZrO2 catalyst;hollow symbols:Ni/ZrO2 catalyst.(b)Catalytic stability at 873 K.The insets are TEM images of the used catalystsGong et al.,Chem Commun 2013,49,4226Improve Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsHigh dispersioncatalysts,method to resistsinteringNanoconfinement of Ni NPs by phyllosilicates structureGong et al.,ACS Sus Chem Eng 2013,1,161(a)Ni/SiO2P (b)Ni/SiO2INi NPs stabilized by the structureGong et al.,ACS Sus Chem Eng 2013,1,161Reaction conditions:ethanol feed velocity,2.5 gh/mol for(c)600,(b)500,and(a)400 C,0.82 gh/mol for(d)700 C;6 vol%of ethanol in gas;S/C=4,1 atm.Stability test on(a and c)Ni/SiO2P and(b and d)Ni/SiO2I.Reaction conditions:(a and b)400 C,(c and d)600 C;1 atm,ethanol feed velocity,10 gh/mol,ethanol in feed,6 vol%for 400 C reaction;ethanol feed velocity,16.4 gh/mol,ethanol in feed,3 vol%for 600 CTEM characterization after 600 C stability test(a and b)TEM images and(c and d)HRTEM images for(a and c)Ni/SiO2P and(b and d)Ni/SiO2I.Insets are for statistics of Ni particle size.Coke deposition rate on Ni/SiO2P and Ni/SiO2IActivity and stability on Ni/PS-based catalystsGong et al.,ACS Sus Chem Eng 2013,1,161Nanoconfinement of Ni NPs by PS NanotubeNi PSCrispationReductionNi PS nanotubeNi/PSnGong et al.,Chem Commun,in press,doi:10.1039/c3cc43895c SampleBET surface area/(m2/g)Particle size/(nm)aCrystal size/(nm)bSH/m2/gNicReduction extent/%dNi/SiO2I327.620.420.09.4Ni/SiO2P384.43.3/14.3/6.814.6Ni/PSn105.6Ni/PSn-400108.54.95.445.422.1Ni/PSn-500110.18.55.832.523.1Ni/PSn-600111.410.7/9.87.3/6.822.435.7Ni/PSn-700110.411.39.911.658.0Physical-chemical properties of Ni/PSnGong et al.,Chem Commun,in press,doi:10.1039/c3cc43895c Reactivity comparison of different Ni/SiO2 catalysts.Reaction conditions:1 atm,400 C,S/C=4,W/F=2.5 gh/mol,EtOH/gas=6%Ethanol steam reforming reactivity and(b)deactivation test on the reduced catalysts.Reaction conditions:(a)1 atm,400 C,S/C=4,W/F=10 gh/mol,EtOH/gas=2.5%;(b)1 atm,400 C,S/C=4,W/F=5 gh/mol,EtOH/gas=4.2%(a)Ethanol steam reforming stability test on Ni/PSn-600,reaction conditions:1 atm,500 C,S/C=4,W/F=10 gh/mol,EtOH/gas=4.2%.(b)TEM images of the catalyst after stability test.Activity and Stability on Ni/PSnGong et al.,Chem Commun,in press,doi:10.1039/c3cc43895c Improve Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsHigh dispersioncatalysts,method to resistsinteringNanoconfinement of Ni NPs by Perovskite structureNanoconfinement sinter resistIncrease interface,improve metal-support intertionWell disperse,reduce nickel particle sizeSamplesSurface Area(BET)/m2/gParticle size of Nia/nmNi contentb/wt%Metal dispersionc/m2/gcatNi/La2O38.7426.626.50.13LC0.01.0910.426.50.15LC0.14.2511.027.80.19LC0.32.1425.131.00.20LC0.52.8529.334.90.38LC0.74.5931.640.00.16LC1.03.0130.651.10.05a:Determined by the Scherrers equation.b:Determined by the species(Ni,La2O3 or CaO)in reduced catalysts.c:Determined by H2 chemisorptionGong et al.,unpublished results图图4-7 还原后还原后的的催化剂催化剂TEM图图STEM of the catalysts after reductionStability testReaction conditions:S/C=3,LHSV=2.5 h-1,550 C,1 atmActivity and Stability on Perovskite-based catalysts Gong et al.,unpublished resultsImprove Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsHigh dispersioncatalysts,method to resistsinteringXRD patterns of the hydrotalcite-like precursors(a)NiMg6(b)NiMg8(c)NiMg10Transmission electron micrograph of the NiMg6 precursorFT-IR of the NiMg6 precursor(a)NiMg6(b)NiMg8(c)NiMg10Nanoconfinement by hydrotalcite-like structureGong et al.,Int J Hydrogen Energy,2010,35:6699-6708(Mg2+Ni2+)/Al3+=3Temperature program reduction of the oxides(a)NiMg6(b)NiMg8(c)NiMg10(d)NiOXRD patterns of the oxides(a)NiMg6(b)NiMg8(c)NiMg10 High Dispersion of Nickel Catalysts(a)(a)(c)Gong et al.,Int J Hydrogen Energy,2010,35:6699-6708XRD patterns of the reduced NiMg10 catalyst at different temperatures(a)973 K(b)1023 K(c)1123 K(d)1173 KConversion/composition(%)vs reduction temperature curves of ethanol steam reforming over the NiMg10 catalyst.Activity on hydrotalcite derived nickel catalysts 973 K 1073 K 1173 KGong et al.,Int J Hydrogen Energy,2010,35:6699-6708Improve Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalystsOxygen mobility of CeO2 based supportsPromote WGSREnhance adsorption of waterSuppress carbon depositionImprove dispersion of nickelOxygen storagecapacityRedoxrateH.Song,U.S.Ozkan,J.Catal.,2009,261:66-74 J.A.Farmer,C.T.Campbell,Science,2010,329:933-935Importance of Surface Oxygen MobilityIncrease oxygen vacancyPromote Ce4+reductionEnhance oxygen mobilityG.Balducci,M.S.Islam,J.Kasapar et al.Chem.Mater.2003,15:3781-3785X.Liu,K.Zhou,L.Wang,B.Wang,Y.Li,J.Am.Chem.Soc.2009,131:31403141Mg additionApproach for Enhancing Oxygen MobilityEnhanced Oxygen Mobility of Ni/CeOxGong et al.,AIChE J.2012,58,516Ethanol steam reforming on Ni/MgO-CeO2 catalysts.Reaction conditions:Pressure:1 atm,temperature:400C,S/C:4,Ethanol feeding W/F:33 g h/molEthanol steam reforming on Ni/7MgCe and Ni/10MgCe at different reaction conditions.(a)Pressure:1 atm,temperature:400 C,S/C:4,ethanol feeding W/F:11 g h/mol;(b)Pressure:1 atm,temperature:600 C,S/C:4,ethanol feeding W/F:33 g h/mol(a)(b)Correlation of Oxygen Mobility and ReactivityGong et al.,AIChE J.2012,58,516Carbon depositions on the Ni/MgO-CeO2 catalysts after 10 h reaction(reaction conditions:1 atm,400 C,and ethanol feeding W/F 33g h/mol);inset:carbon deposition per unit Ni on the Ni/MgO-CeO2 catalystsProposed MechanismThe addition of Mg greatly enhances the OOS of CeO2,and subsequentlyfacilitate the conversion of ethanol and removal of deposited carbon.Gong et al.,AIChE J.2012,58,516Improve Ni dispersion and nanoconfinement effect of Ni NPsSkeletal NiNiZrO2Ni-CaO-Al2O3 bi-functional catalystsImprovedispersion and nanoconfinement effectImprove surface oxygen mobilityProcessintensificationNickel precursor effectNickel PS structureNickel HTLs structureNickel perovskite structureNi/MgO-CeO2 catalysts(Ca2+Ni2+)1-xAl3+x(OH)2(An-)x/nmH2OBi-functional catalysts:adsorption and reformingBi-functional CatalystsGong et al.,Eng Environ Sci 2012,5,8942Comparison of cyclic sorption capacity of NiCaOAl2O3 catalysts(carbonation in 50%CO2 for 45 min at 500 C and calcination in100%N2 for 20 min at 700 C).Comparation of NiCaOAl2O3 catalysts in the SESRE experiment.Solid line:H2 concentration,dashed line:CO2 concentration,reaction conditions:1 atm,500 C,S/C?4,120 min,desorption conditions:1 atm,700 C,30 minMultiple reactiondesorption cycles of the CA3.0 catalyst and themixture of CaO and Ni/Al2O3 catalysts(reaction conditions:1 atm,500C,S/C?4,90 min,desorption conditions:1 atm,700 C,30 min)Sorption Enhanced steam reformingGong et al.,Eng Environ Sci 2012,5,8942Bi-functional MechanismGong et al.,Eng Environ Sci 2012,5,8942三传一反三传一反(催化剂放大)(催化剂放大)理性设计理性设计(模型催化)(模型催化)活性位本质活性位本质展望展望Thank you for your attention!
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!