125KHzRFID读写器的FSK解调器设计

上传人:小** 文档编号:159635191 上传时间:2022-10-09 格式:DOC 页数:7 大小:245.50KB
返回 下载 相关 举报
125KHzRFID读写器的FSK解调器设计_第1页
第1页 / 共7页
125KHzRFID读写器的FSK解调器设计_第2页
第2页 / 共7页
125KHzRFID读写器的FSK解调器设计_第3页
第3页 / 共7页
点击查看更多>>
资源描述
125KHZRFID读写器的FSK解调器设计很多工作在125KHn载波频率的RFID芯片,如Microchip公司的MCRF200、MCRF250以及Atmel公司的e5551、T5557等都可以将其调制方式设置为FSK方式。若芯片设置为FSK调制方式,那么读写器(PCD)必须具有FSK解调电路。FSK解调电路将FSK调制信号解调为NRZ码。本文给出一种FSK解调电路,该电路的特点是电路简单可靠,很适宜PCD中应用。FSK调制工作在125KHn的RFID的FSK调制方式都很相似,图1给出了一种FSK调制方式的波形图。从图中可见,此时数据速率为:载波频率fc/40=125K/40=3125bps,在进行FSK调制后,数据0是频率为fc/8的方波,即f0=fc/8;而数据1是频率为fc/5的方波,即f1=fc/5。经FSK调制后的传送数据,通过负载调制方式传送到PCD,图1中也给出了射频波形,载波的调制是采用调幅。FSK解调PCD经载波解调(通常采用包络检波)、放大滤波和脉冲成形电路后,得到FSK调制信号。FSK解调电路完成将FSK调制信号恢复为NRZ码。FSK解调实现方法较多,本文介绍的一种FSK解调电路示于图2,该电路简单方便,可以很好地完成fsk解调。图2所示电路工作原理如下:触发器D1将输入FSK信号变成窄脉冲,即Q为高时,FSK上跳沿将Q端置高,但由于此时Q为低,故CL端为低,又使Q端回到低电平。Q端的该脉冲使十进计数器4017复零并重新计数。4017计数器对125KHn时钟计数,由于数据宽为40/fc=40Tc(Tc为载波周期),若为数据0,FSK方波周期T0=8Tc。当计至第7个时钟数时,Q7输出为高,使CLKen(CLK使能端)为高,计数器不再计第8个时钟,此时Q7为高,当触发器D1的Q输出端在下一个FSK波形上跳时,触发器D2的Q端输出为低。FSK波形上跳同时也将计数器复零并重新计数。因此,在数据为0的对应FSK波形频率下,触发器D2的Q输出端为低,即为数据0的NRZ码电平。图2FSK解调电路N,:if:.Ia5.:KJ:K卿啊呱卿删测啊MrHUW#WUlJ_JlX_MlH#-Io-wT,I摯Unii:l-K.WIX35toysthMSBit.图3数位0(后跟位1)的解调波形图例在数据1时,由于FSK波形周期Tl=5Tc,故计数器4017的Q7引脚始终为低,在这期间触发器D2的Q输出端保持为高,即为数据1的NRZ电平。数据0的解调波形图示于图3。从图中可见,若0的紧跟位为0,则其位宽为40Tc,若紧跟位为1,其位宽为37Tc,短了三个时钟周期。位1的紧跟位为1,其位宽保持为40Tc,若其紧跟位为0,则其位宽为43Tc。因此,位值0和1的交错,不会造成位宽误差的传播,而是进行了补偿。3个时钟误差,不会影响MCU对位判的正确性。单稳电路产生的上跳变化为触发器D2提供了正常工作的CL端电平,同时也通知MCU此后触发器D2的输出数据有效。单稳电路可采用74HC123,它为可重复触发单稳电路,可以自动启动和关闭该解调器。RFID芯片中FSK通常有多种模式,如e5551中有四种模式(表1),该电路上面的分析描述对应的是FSKla,但对于FSK1,只需将输出端改为触发器D2的Q端即可。若用FSK2,则计数器的输出端改用Q9即可。对于不同的数据速率,只是位宽不同,不影响解调的结果。结语该电路简单可靠,已用于水表读头中。转载:RFID系统中的频段特点对一个RFID系统来说,它的频段概念是指读写器通过天线发送、接收并识读的标签信号频率范围。从应用概念来说,射频标签的工作频率也就是射频识别系统的工作频率,直接决定系统应用的各方面特性。在RFID系统中,系统工作就像我们平时收听调频广播一样,射频标签和读写器也要调制到相同的频率才能工作。射频标签的工作频率不仅决定着射频识别系统工作原理(电感耦合还是电磁耦合)、识别距离,还决定着射频标签及读写器实现的难易程度和设备成本。RFID应用占据的频段或频点在国际上有公认的划分,即位于ISM波段。典型的工作频率有:125kHz、133kHz、13.56MHz、27.12MHz、433MHz、902MHz928MHz、2.45GHz、5.8GHz等。按照工作频率的不同,RFID标签可以分为低频(LF)、高频(HF)、超高频(UHF)和微波等不同种类。不同频段的RFID工作原理不同,LF和HF频段RFID电子标签一般采用电磁耦合原理,而UHF及微波频段的RFID一般采用电磁发射原理。目前国际上广泛采用的频率分布于4种波段,低频(125KHz)、高频(13.54MHz)、超高频(850MHz910MFz)和微波(2.45GHz)。每一种频率都有它的特点,被用在不同的领域,因此要正确使用就要先选择合适的频率。低频段射频标签,简称为低频标签,其工作频率范围为30kHz300kHz。典型工作频率有125KHz和133KHz。低频标签一般为无源标签,其工作能量通过电感耦合方式从阅读器耦合线圈的辐射近场中获得。低频标签与阅读器之间传送数据时,低频标签需位于阅读器天线辐射的近场区内。低频标签的阅读距离一般情况下小于1米。低频标签的典型应用有:动物识别、容器识别、工具识别、电子闭锁防盗(带有内置应答器的汽车钥匙)等。中高频段射频标签的工作频率一般为3MHz30MHz。典型工作频率为13.56MHz。该频段的射频标签,因其工作原理与低频标签完全相同,即采用电感耦合方式工作,所以宜将其归为低频标签类中。另一方面,根据无线电频率的一般划分,其工作频段又称为高频,所以也常将其称为高频标签。鉴于该频段的射频标签可能是实际应用中最大量的一种射频标签,因而我们只要将高、低理解成为一个相对的概念,即不会造成理解上的混乱。为了便于叙述,我们将其称为中频射频标签。中频标签一般也采用无源设主,其工作能量同低频标签一样,也是通过电感(磁)耦合方式从阅读器耦合线圈的辐射近场中获得。标签与阅读器进行数据交换时,标签必须位于阅读器天线辐射的近场区内。中频标签的阅读距离一般情况下也小于1米。中频标签由于可方便地做成卡状,广泛应用于电子车票、电子身份证、电子闭锁防盗(电子遥控门锁控制器)、小区物业管理、大厦门禁系统等。超高频与微波频段的射频标签简称为微波射频标签,其典型工作频率有433.92MHz、862(902)MHz928MHz、2.45GHz,5.8GHz。微波射频标签可分为有源标签与无源标签两类。工作时,射频标签位于阅读器天线辐射场的远区场内,标签与阅读器之间的耦合方式为电磁耦合方式。阅读器天线辐射场为无源标签提供射频能量,将有源标签唤醒。相应的射频识别系统阅读距离一般大于1m,典型情况为4m6m,最大可达10m以上。阅读器天线一般均为定向天线,只有在阅读器天线定向波束范围内的射频标签可被读/写。由于阅读距离的增加,应用中有可能在阅读区域中同时出现多个射频标签的情况,从而提出了多标签同时读取的需求。目前,先进的射频识别系统均将多标签识读问题作为系统的一个重要特征。超高频标签主要用于铁路车辆自动识别、集装箱识别,还可用于公路车辆识别与自动收费系统中。以目前技术水平来说,无源微波射频标签比较成功的产品相对集中在902MHz928MHz工作频段上。2.45GHz和5.8GHz射频识别系统多以半无源微波射频标签产品面世。半无源标签一般采用钮扣电池供电,具有较远的阅读距离。微波射频标签的典型特点主要集中在是否无源、无线读写距离、是否支持多标签读写、是否适合高速识别应用,读写器的发射功率容限,射频标签及读写器的价格等方面。对于可无线写的射频标签而言,通常情况下写入距离要小于识读距离,其原因在于写入要求更大的能量。微波射频标签的数据存储容量一般限定在2Kbits以内,再大的存储容量似乎没有太大的意义,从技术及应用的角度来说,微波射频标签并不适合作为大量数据的载体,其主要功能在于标识物品并完成无接触的识别过程。典型的数据容量指标有:lKbits、128Bits、64Bits等。由Auto-IDCenter制定的产品电子代码EPC的容量为90Bits。微波射频标签的典型应用包括移动车辆识别、电子闭锁防盗(电子遥控门锁控制器)、医疗科研等行业。不同频率的标签有不同的特点,例如,低频标签比超高频标签便宜,节省能量,穿透废金属物体力强,工作频率不受无线电频率管制约束,最适合用于含水成分较高的物体,例如水果等;超高频作用范围广,传送数据速度快,但是比较耗能,穿透力较弱,作业区域不能有太多干扰,适用于监测港口、仓储等物流领域的物品;而高频标签属中短距识别,读写速度也居中,产品价格也相对便宜,比如应用在电子票证一卡通上。目前,不同的国家对于相同波段,使用的频率也不尽相同。欧洲使用的超高频是868MHz,美国则是915MHz。日本目前不允许将超高频用到射频技术中。目前在实际应用中,比较常用的是13.56MHz、860MHz960MHz、2.45GHz等频段。近距离RFID系统主要使用125KHz、13.56MHz等LF和HF频段,技术最为成熟;远距离RFID系统主要使用433MHz、860MHz960MHz等UHF频段,以及2.45GHz、5.8GHz等微波频段,目前还多在测试当中,没有大规模应用。我国在LF和HF频段RFID标签芯片设计方面的技术比较成熟,HF频段方面的设计技术接近国际先进水平,已经自主开发出符合ISO14443TypeA、TypeB和ISO15693标准的RFID芯片,并成功地应用于交通一通和第二代身份证等项目中。2O世纪8O年代,以磁卡和条形码作为信息载体,各种身份识别逐渐广泛应用于我国服务领域、物流与企业管理领域.射频识别(radiofrequencyidentification,RFID)卡具有非接触、操作方便、可靠、识别率高、寿命长等突出优点,2O世纪9O年代起大规模应用于众多领域.目前仍有大量基于磁卡和条码的应用系统正在或即将投入使用,这些系统在设计时不少是把磁卡或条码解码部分作为独立的模块加以考虑.基于此,提出以下设想:若能够采用廉价只读RFID卡取代磁卡或条码,而让RFID卡阅读模块直接替换原来的磁卡机芯或条码解码模块,那么,整个系统不需做什么改动,即可投入运行或继续使用.这样,不论改造旧系统或过渡到采用RFID卡的新系统,都可提高效率,减少浪费,在当前仍有市场和积极的意义.本文介绍的模块只考虑以只读的RFID卡替代不需修改信息的磁卡(其他情况读写卡程序有所不同).1模块组成和工作原理本仿真模块的功能就是解码读取只读RFID卡的信息(通常就是简单的序列号,并仿真磁卡机芯输出美国银行家协会(AmericanbankerSassociation,ABA)磁卡格式数据,其组成框图见图1.I射师母:4-125常八亦I图1仿真模块的组成框图模块的关键部分是天线、ATMEL的射频卡读写基站芯片U2270B和单片机AT89C2051.工作时,基站芯片U2270B通过天线(一般使用铜制漆包线绕制直径3cm、线圈100圈即可,电感值为1.35mH)以约125kHz的调制射频信号为RFID卡提供能量(电源),同时能接收来自H4001的信息,并以曼彻斯特编码(Manchester)输出.而AT89C2051则是从U2270B得到H4001卡的64位信息,根据曼彻斯特编码规则进行解码,对数据加以校验,获取其中代表1O位十进制序列号的32位二进制数,并转换成对应的ABA磁卡格式数据,再从/CLD、CLK、DATA3根信号线仿真磁卡机芯输出数据.2RFID卡H4001及曼彻斯特编码图1所示模块中,配套使用的RFID卡是EMMicroelectronic公司的H4001,该卡属于无源的低频RFID卡,典型工作频率为125kHz,工作所需要的能量是通过电磁耦合单元或天线,以非接触的方式传送.当获得足够能量后,H4001便不断循环地往外部发送其自身的序列号等64位信息.发送时要对数据进行曼彻斯特编码和信号调制.规则如下:在每个时钟周期(对应1位数据)的中间位置,当数据位为“0”时电平由高向低跳变,而数据位为“1”时电平由低向高跳变;本模块的另一种表示方法则恰好相反,其波形如图2所示.图2一个典型数据序列的Manchester编码波形图对于采用曼彻斯特编码的H4001,其数据速率为RF/64.假设基站工作时的射频频率是125kHz,则对应1位的时钟(CLOCK)的周期卅6464x10s(T)=512ys.3基站芯片U2270B与模块电路射频卡的读写需要由射频卡基站芯片来完成数据的调制、发射和射频的接收以及数据的解调任务.ATMEL公司生产的U2270B是一种低成本、性能完善的低频(100150kHz)射频卡基站芯片,采用ManChester编码和双相编码,可用于读取H4001RFID卡.参照文献3和5,针对H4001RFID卡,采用U2270B设计的射频识别卡读取模块的电路见图3.Ifq-2KiaIIDhaC01L3DCTDGiroQVTPITTCOEU加塚DATA图3基于U2270B的REID卡读取模块电路图通过调整U2270B的第15脚(RF端)所接电阻的大小,可将内部振荡频率固定在125kHz.计算公式如下:研二嚟-5.当加=125HU时府二110kft.读卡时,RFID卡发射来的经过125kHz载波调制后的信号由基站天线接收后,馈送到U2270B的第4脚(Input)处,在第2脚(Output)输出解调后的Manchester编码的数据信号,送给微处理器.应当说明,射频卡H4001返回的是采用Manchester编码的数据流,基
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!