DK7732数控高速走丝电火花线切割机及控制系统设计说明书

上传人:无*** 文档编号:155599478 上传时间:2022-09-23 格式:DOC 页数:77 大小:1.15MB
返回 下载 相关 举报
DK7732数控高速走丝电火花线切割机及控制系统设计说明书_第1页
第1页 / 共77页
DK7732数控高速走丝电火花线切割机及控制系统设计说明书_第2页
第2页 / 共77页
DK7732数控高速走丝电火花线切割机及控制系统设计说明书_第3页
第3页 / 共77页
点击查看更多>>
资源描述
南华大学机械工程学院毕业设计(论文)引 言本次毕业设计从2004年2月份开始到本年的六月中下旬结束,长达半年。毕业设计是一名在校大学生最后的一次也是最重要的一次设计,说其重要主要是因为它将检验你在大学生活中所学知识的扎实程度,其间你必须复习所学过的一些课程,学习一些要用到的新的知识,它还将练习你的动手能力,思考能力,创新能力,是你在大学学习生活的一次升华,是一个提升阶段,更是走向工作岗位的一次练兵,因此我们都对此极为重视,更是投入了极大的热情与努力来更好的完成它。本次设计在颜竟成教授的悉心指导下分四个阶段按部就班的有条不紊的进行。第一阶段是搜集整理阶段。在本阶段主要是搜集足够的资料信息并对设计题目进行分析和实地调查,做到心中有轮廓,。本阶段其实从2004年元旦就开始了截止到2004年3月份第一张外观图绘制成功为止。第二阶段是机械部分设计阶段。本阶段主要应用大学里面所学的专业知识来进行运丝系统机构设计和坐标工作台的纵向和横向进给机构设计。另外还要进行储丝筒的三维零件设计。本阶段主要是从三月份到五月份。五月份到六月份则是第三阶段:控制系统设计阶段。主要进行电器电路设计,包括步进电机驱动设计和脉冲功率放大电路设计。本阶段也是一个学习的阶段,对自己不太熟悉的的的领域的一次学习。六月份开始就是最后一个阶段:整理复习阶段,主要从事前几个阶段的整理温习,写说明书。以及毕业答辩前的各项具体细节的准备。可以说每个阶段都是十分紧张而有难度的,有些问题是由于设计的难度,有些还是因为自己知识上的欠缺和不扎实造成的。可以说这次毕业设计是个查缺补漏的机会。尤其是在同学的帮助下,特别是在颜教授的指导下,遇到困难不逃避,主动请教,主动学习,独立思考提出新方案,困难被一个个解决了,有了本次设计的成功。更锻炼了团体协作精神,独立作业能力,专业设计基础,对自己将来都是一次具有深远影响的事件。一、 总体方案设计(一) 总体方案的拟定(1)电火花线切割机床具有定位,纵向和横向的直线插补功能;还能要求暂停,进行循环加工等,因此,数控系统选取连续控制系统。(2)电火花线切割机床属于经济型数控机床,在保证一定加工精度的前提下,应简化结构,降低成本。因此,进给伺服系统应采用步进电机开环控制系统。(3)根据电火花线切割机床最大的加工尺寸,加工精度,控制速度和经济性要求,一般采用8位微机。在8位微机中,MCS-51系列单片机具有集成度高,可靠性好,功能强,速度快,抗干扰能力强,具有很高的性能价格比。因此,可选择MCS-51系列单片机扩展系统。(4)根据系统的功能要求,微机控制系统中除了CPU外,还包括扩展程序存储器,扩展数据存储器,I/O接口电路;包括能输入加工程序和控制命令的键盘,能显示加工数据和机床状态信息的显示器;包括光电隔离电路和步进电机驱动电路。此外,系统中还应该包括脉冲发生电路和其他辅助电路。(5)纵向和横向进给是两套独立的传动链,它们由步进电机、齿轮副、丝杠螺母副组成,起传动比应满足机床所要求的。(6)为了保证进给伺服系统的传动精度和平稳性,选用摩擦小、传动效率高的滚珠丝杠螺母副,并应有预紧机构,以提高传动刚度和消除间隙。齿轮副也应有消除齿侧间隙的机构。(7)采用滚动导轨可以减少导轨间的摩擦阻力,便于工作台实现精确和微量移动,且润滑方法简单。在上述方案的基础上,有条件的还可以进一步实现钼丝的角度调节,使加工过程更加细致。(伺服系统总体方案框图如图1.1)(二)主要技术参数的确定技术参数主要包括运动参数,尺寸参数和动力参数。DK7732电火花线切割机床的主要技术参数如下:工作台行程/mm 500x320最大切割厚度/mm 30(可调)加工表面粗糙度Ra/m 2.5加工精度/mm 0.015切割速度/mm2/min 100切割工件最大厚度 120mm加工锥度 360电极丝移动速度 11m/s电极丝最大直径 0.10.2mm 图1.1 伺服系统总体方案框图二、 储丝走丝部件结构设计(一)储丝走丝部件运动设计运丝机构的运动是由丝筒电机正反转得到的。电极通过联轴节与丝筒连接,丝筒装有齿轮,通过过渡齿轮与丝杆上的齿轮啮合。丝杆固定在丝板上,螺母固定上底座上,拖板与底座采用装有滚珠的V形滚动导轨连接,这样丝筒每转一周拖板直线移动相应的距离,因此机床工作前应根据零件厚薄和精度要求在0.120.25mm的范围内选择适当的钼丝直径。1、 对高速走丝机构的要求高速走丝机构的储丝筒转动时,还要进行相应的轴向移动,以保证电极丝在储丝筒上整齐排绕。储丝筒的径向跳动和轴向窜动量要小。储丝筒要能正反转,电极丝的走丝速度在712m/s范围内无级或有级可调,或恒速运转。走丝机构最好与床身相互绝缘。传动齿轮副,丝杠副应该具备润滑措施2、 高速走丝机构的结构及特点高速走丝机构由储丝筒组合件、上下拖板、齿轮副、换向装置和绝缘部分组成,如图2.2所示储丝筒由电动机通过联轴器带动正反向转动。储丝筒另外一端通过三对齿轮减速后带动丝杠。储丝筒、电动机、齿轮都安装在两个支架上。支架及丝杠则安装在拖板沙锅内,调整螺母装在底座上,拖板在底座上来回移动。螺母具有消除间隙的副螺母和弹簧,齿轮及丝杠螺距的搭配为没旋转一圈拖板移动0.25mm。所以该储丝筒适用于0.25mm以下的钼丝。储丝筒运转时应平稳,无不正常振动。滚筒外圆振摆应小于0.03mm,反向间隙应小于0.05mm,轴向窜动应完全彻底消除。高频电源的负端通过碳刷送到储丝筒轴的尾部,然后传到钼丝上,碳刷应保持良好接触,防止机油或者其他脏物进入。储丝筒本身作高速正反向转动,电机、滚筒及丝杠的轴承应定期拆洗并加润滑脂,换油期限可根据使用情况具体决定。其余中间轴、齿轮、导轨及丝杠、螺母等每班应注油一次。(1) 储丝筒旋转组合件储丝筒旋转组合件主要由储丝筒、联轴器和轴承座组成。 储丝筒 储丝筒是电极丝稳定移动和整齐排绕的关键部件之一,一般用45号钢制造。为了减少转动惯量,筒壁应尽量薄,按机床规格,本次设计DK7732应选用4mm(符合1.55mm)。为了进一步减少转动惯量,也可以选用铝镁合金材料制造储丝筒壁厚要均匀,工作表面要有较好的表面粗糙度,一般Ra为0.8m。为保证储丝筒组合件动态平衡,应严格控制内孔、外圆对支撑部分的同轴度。储丝筒与主轴装配后的径向跳动量应不大于0.01mm。一般装配后,以轴的 两端中心孔定位,冲摸储丝筒外圆和与轴承配合的轴径。 联轴器 走丝机构中运动组合件的电机轴与储丝筒中心轴,一般不采用整体的长轴,而是利用联轴器将二者联在一起。由于储丝筒运行时频繁换向,联轴器瞬间受到正反剪切力很大,因此多采用弹性联轴器和摩擦锥式联轴器。图1.2 运丝系统机构结构图a. 弹性联轴器,如图2.1所示 图2.1 弹性联轴器弹性联轴器结构简单,惯性力矩小,换向较平稳,无金属撞击声,可以减少对储丝筒中心轴的冲击。弹性材料采用橡胶、塑料或者皮革。这种联轴器的优点是,允许电动机轴与储丝筒轴稍有不同心和不平行(最大不同心允许为0.20.5mm,最大不平行为1),缺点是由它联接的两根轴在传递扭矩时会有相对转动。b. 摩擦锥式联轴器,如图2.2所示。摩擦锥式联轴器可带动转动惯量大的大、中型储丝筒旋转组合件。此种联轴器可传递较大的扭矩,同时在传动符合超载时,摩擦面之间的华东还可以起到过载保护作用。因为锥形摩擦面会对电机和储丝筒产生轴向力,所以在电机主轴的滚动支撑中,应选用向心止推轴承和单列圆锥滚子轴承。此外,还要正确选用弹簧规格。弹力过小,摩擦面打滑,使传动不稳定或摩擦面过热烧伤;弹力过大,会增大轴向力,影响中心轴的正常转动。 图2.2 摩擦锥式联轴器c.磁力联轴器是依靠磁力无接触式联接的,保留了传统联轴器的优点。具体有如下几种。套筒式磁力联轴器(如图3.1所示) 图3.1 套筒式磁力联轴器此种联轴器主动磁极3和从动磁极2均可为圆筒状或以若干磁铁排列成圆筒状,并用黏结剂分别将其固定于主动轴套4外表面上和从动轴套1没表面上, 主动轴6与被动轴7间用键5、8联接。主动磁极3和从动磁极2之间有一定间隙,其目的为:两磁极之间无摩擦,靠磁场联接;被联接两轴因受制造及安装误差,承载后变形及温度变化等因素影响,往往不能严格对中心。留有一定间隙,可补偿这一不足,还可适当降低加工及装配要求。该套筒式联轴器因磁场面积大,可以传递较大扭矩。其磁场联接力可以通过改变主动轴套4和从动轴套1的配合长度来进行调整。圆盘式磁力联轴器(如图3.2所示) 图3.2 圆盘式磁力联轴器此种联轴器主动磁极3和从动磁极2均可为圆盘状或以若干磁铁排列成圆形射线状,并用黏结剂分别将其固定于主动轴套4和从动轴套1的大表面上。由于圆盘式联轴器磁场面积小,所以传递扭矩小,并且体积相应的也小。其磁场联接力可以通过改变主动磁极3和从动磁极2之间的距离来进行调整。由于磁力联轴器轴与轴之间没有零件直接联接,而是靠磁场联接来传递扭矩,因此电机换向时,转动惯量被磁力线的瞬时扭曲抵消;在超负荷时,键8、5联接的主动轴7与从动轴6可以自动打滑脱开,起到安全离合器的作用,不会损坏任何零部件。主动磁极3和从动磁极2均用强的永磁材料制成,例如,铁氧体、稀土合金等。综合上述几种类型,参照本次设计要求,选择性价比最高的,显然a类型既是弹性联轴器已经满足条件,因此本次设计选用弹性联轴器。(2) 上下拖板走丝机构的上下拖板我们决定采用下面两种滑动导轨之一。燕尾型导轨,这种结构紧凑,调整方便。旋转调整杆带动塞铁,可改变导轨副的配合间隙。但该结构制造和检验比较复杂,刚性较差,传动中摩擦损失也较大。三角、矩形组合式导轨,如图4.1所示。导轨的配合间隙由螺钉和垫片组成的调整环节来调节。 图4.1 三角、矩形组合式导轨由于储丝筒走丝机构的上拖板一边装有运丝电动机,储丝筒轴向两边负荷差较大。为保证上拖板能平稳的往复移动,应把下拖板设计的较长以使走丝机构工作时,上拖板部分可始终不滑出下拖板,从而保持拖板的刚度、机构的稳定性及运动精度。经比较,显然三角、矩形组合式导轨是比较理想的,因此,决定选用此种导轨作为本次设计之用。(3) 齿轮副与丝杠副走丝机构上拖板的传动链是由2-3级减速齿轮副和一组丝杠副组成,它使储丝筒在转动的同时,作相应的轴向位移,保证电机丝整齐的排绕在储丝筒上。在本次设计线切割机中,走丝机构常是通过配换齿轮来改变储丝筒的排丝筒的排丝距离,以适应排绕不同直径电机丝的要求。丝杠副一般采用轴向调节法来消除螺纹配合间隙。为防止走丝电机换向装置失灵,导致丝杠副和齿轮副损坏,在齿轮副中,可选用尼龙轮代替部分金属齿轮。这不但可以在电机换向装置失灵时,由于尼龙齿轮先损坏,保护丝杠副与走丝电机,还可以减少振动和噪声。但是由于要照顾专业知识的复习,所以决定选用传统的金属材料制造。(4) 线架、导轮部件结构线架与走丝机构组成了电极丝的运动系统。线架的主要功用是在电极丝按给定线速度运动时,对电极丝去支撑作用,并使电极丝工作部分与工作台平面保持一定的几何角度。对线架的要求是:具有足够的刚度和强度,在电极丝运动(特别是高速1走丝)时,不应出现振动和变形;线架的导轮有较高的运动精度,径向偏摆和轴向窜动不超过5m;导轮与线架本体、线架与床身之间有良好的绝缘性能;导轮运动组合件有密封措施,可防止带有大量放电产物和杂质的工作液进入导轮轴承;线架不但能保证电极丝垂直于工作台平面,在具有 锥度切割功能的机床上,还具备能使电极丝按给定要求保持与工作台平面呈一定角度的功能。线架按功能可分为固定式、升降式和偏移式三种类型;按结构可分为悬臂式和龙门式两种类型。悬臂式固定线架主要由线架本体、导轮运动组合件及保持器等组成。(1) 线架本体结构中、小型线切割机床的线架本体常采用单柱支撑、双臂悬梁式结构。由于支撑电极丝的导轮位于悬臂的端部,同时电极丝保持一定张力,因此应加强线架本体的刚度和强度,使线架的上下悬臂在电极丝运动时不致振动和变形。 为了进一步提高刚度和强度,在上下悬臂间增加加强筋的结构。有的机床的线架本体有的采用龙门结构。这时,工作台拖板只沿一个坐标方向运动,另一个坐标方向的运动通过架在横梁上的线架拖板来实现。此外,针对不同厚度的工件,还有采用丝臂张开高度可调的分离式结构,活动丝臂在导轨上滑动,上下移动的距离由丝杠副调节。松开固定螺钉时,旋转丝杠带动固定于上丝臂体的丝母,使上丝臂移动。调整完毕后拧紧固定螺钉,上丝臂位置便固定下来。为了适应线架丝臂张开高度的变化,在线架上下部分应增设副导轮,如图4.2所示:图4.2 可移动丝臂(2)导轮部件结构导轮是本机床关键零件,关系到切割质量,对导轮运动组合件的要求如下。a. 导轮V形槽面应有较高的精度,V形槽底的圆弧半径必须小于选用的电极丝半径,保证电极丝在导轮槽内运动时不产生轴向移动。b. 在满足一定强度要求下,应尽量减轻导轮质量,以减少电极丝换象时的电极丝与导轮间的滑动摩擦。导轮槽工作面应有足够的硬度,以提高其耐磨性。c. 导轮装配后转动应轻便灵活,应尽量减少轴向窜动和径向跳动。d. 进行有效的密封,以保证轴承的正常工作条件。导轮运动组合件的结构导轮运动组合件的结构主要有三种:悬臂支撑结构、双支撑结构和双轴尖支撑结构。悬臂支撑结构如图 5.1所示,结构简单,上丝方便。但是因为悬臂支撑,张紧的电极丝运动的稳定性较差,难于维持较高的运动精度,同时也影响导轮和轴承的使用寿命。 图5.1悬臂支撑导轮结构双支撑结构为导轮居中,两端用轴承支撑,结构复杂,上丝麻纺。但是此种结构的运动稳定性较好,刚度较高,不容易发生变形及跳动。双轴尖支撑结构。导轮两端加工成30锥形轴尖,硬度在RC60以上。轴承由红宝石或者锡磷青铜制成。该结构易与保证导轮运动组合件的同轴度,导轮轴向窜动和径向跳动量可以控制在较小的范围内。缺点是轴尖运动副摩擦力大,易于发热和磨损。为补偿轴尖运动副的磨损,利用弹簧的作用力使运动副良好接触。比较以上三种结构特点,可以看出DK7732高速走丝电火花线切割机床的导轮选择第二种比较适宜。导轮的材料 为了保证导轮轴径与导向槽的同轴度,一般采用整体结构。导轮要求用硬度高、耐磨性好的材料制成(如GCr15、W18Cr4V),也可以选用硬质合金或陶瓷材料制造导轮的镶件来增强导轮V形工作面的耐磨性和耐蚀性。导轮组合件的装配导轮组合件装配的关键是消除滚动轴承中的问题,避免滚动体与套环工作表面在负荷作用下产生弹性变形,以及由此引起的轴向窜动和径向跳动。因此,常用对轴承施加预负荷的方法来解决。通常是在两个支撑轴承的外环间放置一定厚度的定位环来获得预负荷。预加负荷必须适当选择,若轴承承受预加负荷过大,在运转时会产生急剧磨损。同时,轴承必须清洗的很洁净,并在显微镜下检查滚道内是否有金属粉末、碳化物等,轴承经清洗、干燥后,填以高速润滑脂,起润滑和密封作用(二) 储丝走丝部件主要零件强度计算1. 齿轮传动比的确定钼丝丝距选择为0.25mm。储丝筒每转一周,拖板带动储丝筒移动0.25mm,丝杠螺距选择为1.5mm。所以储丝筒与丝杠见齿轮传动比为:u=0.25/1.5=1:6;采用二级齿轮传动,取u1=1/2,u2=1/3。2. 齿轮齿数的确定取Z=23;由于齿轮齿根与轴上键距离不能为零。即df/2(d+t1)2m由d=16mm查设计手册得:t1=2.3;而df1=d12hf=(z12ha*2c*)m=(2320.5)m=20.5m代入上式得:20.5/2m(16+2.3)/22m m1.3取m=2则Z2=2Z1=46d1=mZ1=223=46mmd2=mZ2=246=92mm取Z3=23Z4=3Z3=323=69d3=mZ3=223=46mmd4=mZ4=269=138mm齿轮1,2中心距 a1=(d1+d2)/2=(46+92)/2=69mm齿轮3,4中心距 a2=(d3+d4)/2=(46+132)/2=92mm参考书机械设计取b=0.5d1=0.546=23mm其他数据如下da1=(Z1+2ha*)m=(23+21) 2=50mmda2=(Z2+2ha*)m=(46+21) 2=96mmdf1=(Z12ha*2c*)m=(232120.25) 2=41mmdf2=(Z22ha*2c*)m=(462120.25)2=87mm同样可以计算得: da3=50mm da4=142mm df3=41mm df4=133mm3. 传动件的估算根据公式 d=91mm其中 N该传动轴的输入功率 N=N其中N电机额定功率从电机到该传动轴之间传动件的传动效率的乘积 n该传动轴的计算转速r/min 计算转速n是传动件能传递全部功率的最低转速每米长度上允许的扭转角(deg/m) 取=0.995,N=0.55kwN= N=0.550.995=0.54725kwn=1390r/mind=91=10.2mm4. 齿轮模数估算齿轮弯曲疲劳估算:m=32=1.039mm齿面点蚀估算:A=370=49.28mm其中n为大齿轮的计算转速,A为齿轮中心距中心距A及齿数Z、Z求出模数=1.428mm取mm中较大者 m=1.428,现取m=2(2) 齿轮模数的验算: 根据接触疲劳计算齿轮模数公式为m=16300mm式中: N计算齿轮传递的额定功率 N= n计算齿轮(小齿轮)的计算转速 r/min 齿宽系数=b/m,常取610。 Z计算齿轮的齿数,一般取传动中最小的齿轮的齿数;i大齿轮与小齿轮的齿数比,i=寿命系数,=;n齿轮的最低转速r/minT预定的齿轮工作期限,中型机床推荐,T=1500020000h;k转速变化系数;k材料强化系数。幅值低的交变载荷可使金属材料的晶粒边界强化,起着阻止疲劳细缝扩展的作用; k功率利用系数 k工作情况系数 k载荷系数 k3齿向载荷分布系数 Y齿形系数 、许用弯曲接触能力 查表得:k1=1.2,k2=1.2,k3=1.15 Ks=knkNkq=knkNkq =0.780.510.60 =0.91 N=0.54725kw =10 =600MPa 则 mj=16300mm =1.824mm 根据弯曲疲劳计算齿轮计算模数公式为: Mw=275mm =275 =0.063mm Ks=knkNkq=knkNkq =0.890.700.75 =0.554 所以m=2符合要求(三) 储丝走丝部件主要零件强度验算1. 齿轮强度的验算齿根危险截面的弯曲强度条件式k载荷系数 k=kAkv 齿宽系数,取0.5kA使用系数,取1kv载荷系数,取1.05齿间载荷分配系数, 齿向载荷分布系数小齿轮传递的转距=95.5105P1/n1 =95.51050.55/1390 =3.78103Nmm =1.11+0.18(1+6.70.52) 0.52+0.1510-30.5 =1.23045 K=11.051.01.6=1.218 查得:b/h=23/4.5=5.11 =1.16 载荷作用与齿顶时齿形系数 载荷作用与齿顶时应力校正系数 查表得:=2.69,=1.575 则=18.4MPa N=60njLh=601390120000=1.668106 s疲劳强度安全系数, s=sH=1, s=sF=1.251.5 kN寿命系数 (kFN=1.0,kHN=1.0) 齿轮的疲劳极限 =340MPa 所以 其中: ZH区域系数 ZE弹性影响系数 ZH= ZH=2.5 ZE=189.8MP kH=kAkV=11.051.01.23045 =1.29 , 因此,所设计齿轮也满足齿面接触疲劳强度要求, 齿轮设计合格。2.主轴的验算按弯扭合成应力校核轴的强度:根据轴的结构图作出轴的计算简图,如图6.1 (a)。并分别作出水平方向和垂直方向的弯矩图,如图 (b),(c),以及扭矩图如图 (d)。 先计算轴上的载荷: 齿轮的分度圆直径为:. 图6.1 轴的结构图与弯矩扭矩图从轴的结构图以及弯矩和扭矩图中可以明显的看出截面B是危险截面。先将计算出的截面C 处的MH、Mr及M的值列于下表1.1 表1.1 应力计算表载荷水平面H垂直面V支反力FFNH1=195.7N, FNH2=31.4NFNH1=71.2N, FNH2=11.4N弯矩MMH=8543.6NmmMV=3109.6 Nmm总弯矩Nmm扭矩TT1=3.78103Nmm轴的计算应力:入如表1.1中数值得:=5.7MPa前已经选顶的轴的材料为45号钢,调质处理 查得=60MPa因此,故安全(四) 主轴组件结构设计1. 轴承的配置形式一般来说数控机床的主轴结构的轴承有以下几种配置形式:(1) 前后支承均采用双列短圆柱滚子轴承来承受径向载荷,安装在前端的两个推力球轴承用来承受前后方向的轴向负载。这种结构能承受较大的负载(特别是轴向负载),可适应强力切削,但主轴转速不能太高,轴承在高转速时容易发热。由于推力球轴承安装在主轴前端,当主轴旋转时前轴承和后轴承温度差较大,热变形对主轴精度影响也较大。前轴承温度高,主轴前端升高量大,后轴承温度低,主轴末端升高量小,因此,这种机构目前应用较小。(2) 前后支承用双列短圆柱滚子轴承来承受径向负荷,用安装在主轴前端的双向向心推力球轴承来承受轴向负载。这种结构刚性较好。(3) 前轴承用单列向心推力球轴承,背靠背安装,由23个轴承组成一套,用以承受径向和轴向负载;后轴承用双列短圆柱滚子轴承。这种结构适应较高转速、较重切削负载,主轴精度较好。但所承受的轴向负载较前两种结构小。(4) 前后支承均采用成组单列向心推力球轴承,用以承受径向和轴向负载。这种结构适应高转速,中等负载的数控机床。在中、小规格的数控机床上采用这种机构较多。本次设计主轴所采用的轴承支承方式为第四种。2. 主轴组件的调整和预紧滚动轴承的预紧是采用适当的方法是滚动体和内外套圈之间产生一定的预变形而带伏负游隙运行。预紧的目的是增加轴承的刚度,提高旋转精度,延长轴承寿命。按预载荷的方向可分为轴向预紧和径向预紧。而角接触球轴承主要是轴向预紧,这可明显提高轴向刚度。如下图为单个角接触球轴承的载荷变形曲线,其弹性变形量a与轴向外载荷Fa的关系为aFa。没有预紧时,在Fa作用下,轴承的轴向变形量为a1;而在具有预紧Fa0条件下,同样作用轴向载荷Fa,轴承的轴向变形增量为a2,显然a2a1,轴承的轴向刚度有所提高。 图5.2 角接触球轴承载荷变形曲线三、 进给传动设计(一)进给传动运动设计1.脉冲当量和传动比的确定1)脉冲当量的确定目前,常用脉冲编码器兼作位置和速度反馈。步进电机每转一转传感器发出一定数量的脉冲每个脉冲代表电机一定数量的脉冲,每个脉冲代表电机一定的转角。步进电机是一种电脉冲控制的特种电机,对于每一个电脉冲步进电机都将产生一个恒定的步进角位移,每一个脉冲或每步的转角称为步进电机的步距角,可由选用的步进电机型号从技术数据表中查出。因此,每脉冲代表锻机一定的转角,这个转角经齿轮副和滚珠丝杆使工作台移动一定的距离。每个脉冲所对应的执行件(如工作台)的移距,称为脉冲当量或分辨率,记为,单位为mm/脉冲。应根据机床或工作台进给系统所要求的定位精度来选定脉冲当量。考虑到机械传动系统的误差存在,脉冲当量值必须大于定位精度值。此次设计的电火花成型机对机床定位精度的设计要求是0.01mm,根据该精度要求可确定脉冲当量为=0.005mm/脉冲。2)传动比的确定 设传动副的传动比为i,若为一级传动,则,为主动齿轮的转速和齿数,为主动齿轮的转速和齿数。若为多级传动,则i为总传动比。对于步进电机,当埋藏当量(mm/脉冲)确定,并且滚珠丝杆导程(mm)和电机步距角都也已初步选定后,则可用下式计算主轴系统的传动比i=1。(二)滚珠丝杠螺母副的型号选择和滚珠丝杠的选型和校核1.滚珠丝杠螺母副的型号选择(1)最大工作载荷计算滚珠丝杠上的工作载荷Fm(N)是指滚珠丝杠副在驱动工作台时滚珠丝杠所承受的轴向力,也叫做牵引力。它包括滚珠丝杠的走刀抗力及与移动体中立和作用于导轨上的其他切削分力相关的摩擦力,可用下列实验公式进行计算。对于矩形导轨 Fm=KFL+f(FV+FC+G)式中: FL工作台进给方向载荷 FV工作台垂直载荷 FC工作台横向载荷 G移动部件的重力 K考虑颠覆力矩影响的实验系数 f考虑颠覆力矩影响的摩擦系数对于滚动导轨:f=0.00250.005由于电火花线切割是电极丝放电进行加工,可以认为FL,FV,FC近似为零所以:Fm=fG取f=0.005,G=1000kg(估算)Fm=fG=10000.005=5(2) 最大动载荷C的计算及主要尺寸初选滚珠丝杠应根据断定动载荷Ca选用,最大动载荷计算原理与滚动轴承相同。滚珠丝杠的最大动载荷应用下式计算 L=60nt/106 式中:L工作寿命,单位106r n丝杠转速,单位r/min v最大切削力条件下进给速度,单位m/min L0丝杠基本导程,单位mm t额定使用寿命,单位h,可取t=15000h fm运转状态系数,无冲击取11.2,一般情况1.21.5所以 = =11.96 =(100010010-3)/5 =20r/minL=60nt/106 = =105.12(106r/min) = =33根据以上计算选取CBM32055(机械设计师手册上)2.滚珠丝杠的选型和校核滚珠丝杆已由专门工厂制造,因此,不用我们自己设计制造,只要根据使用工况选择某种类型的结构,再根据载荷、转速等条件选定合适的尺寸型号并向有关厂家订购。此次设计中滚珠丝杆被三次选用,故本人只选取其中最重要的主轴传动中的滚珠丝杆加于设计和校核。其步骤如下: 首先对于一些参数说明如下: 轴向变载荷,其中i表示第i个工作载荷,i=1、2、3n ;第i个载荷对应的转速(r/min);第i个载荷对应的工作时间 (h) ;丝杆副最大移动速度(mm/min);丝杆预期寿命。1型号选择(1)根据使用和结构要求 选择滚道截面形状,滚珠螺母的循环方式和预紧方式;(2)计算滚珠丝杆副的主要参数 根据使用工作条件,查得载荷系数=1.0系数=1.5; 计算当量转速 计算当量载荷 初步确定导程 取5mm计算丝杆预期工作转速计算丝杆所需的额定载荷(3)选择丝杆型号根据初定的和计算的,选取导程为5mm,额定载荷大于的丝杆。所选丝杆型号为CDM2004-2.5。其为外循环双管式、双螺母垫片预紧、导珠管埋入式系列滚珠丝杆。2临界转速校核校核合格。3由于此丝杆是竖直放置,且其受力较小,温度变化较小。所以其稳定性、温度变形等在此也没必要校核。4滚珠丝杆的预紧预紧力一般取当量载荷的三分之一或额定动载荷的十分之一。即:其相应的预紧转矩(三)步进电机的选用步进电动机又称为脉冲电动机,是一种把电脉冲信号转换成与脉冲数成正比的角位移或直线位移的执行元件。具有以下四个特点:转速(或线速度)与脉冲频率成正比;在负载能力允许的范围内,不因电源电压、负载、环境条件的波动而变化;速度可调,能够快速起动、制动和反转;定位精度高、同步运行特性好。数控电火花成型机的动力系统要求电动机电位精度高,速度调节方便快速,受环境影响小,且额定功率小,并且可用于开环系统。而BF系列步进电动机为反应式步进电动机,具备以上的所有条件,我们选用了型号90BF004的电动机作为主运动的动力源。选用时主要有以下几个步骤:(一)根据脉冲当量和最大静转矩初选电机型号1步距角初选步进电机型号,并从手册中查到步距角,由于 综合考虑,我初选了,可满足以上公式。2距频特性步进电机最大静转矩Mjmax是指电机的定位转矩。步进电机的名义启动转矩Mmq与最大静转矩Mjmax的关系是: Mmq=步进电机空载启动是指电机在没有外加工作负载下的启动。步进电机所需空载启动力矩按下式计算: 式中:Mkq为空载启动力矩;Mka为空载启动时运动部件由静止升速到最大快进速度折算到电机轴上的加速力矩;Mkf为空载时折算到电机轴上的摩擦力矩;为由于丝杆预紧折算到电机轴上的附加摩擦力矩。而且初选电机型号时应满足步进电动机所需空载启动力矩小于步进电机名义启动转矩,即: MkqMmq=Mjmax计算Mkq的各项力矩如下:(1)加速力矩 (2)空载摩擦力矩 (3)附加摩擦力矩 (二)启动矩频特性校核 步进电机有三种工况:启动,快速进给运行,工进运行。 前面提出的,仅仅是指初选惦记后检查电机最大静转矩是否满足要求,但是不能保证电机启动时不丢步。因此,还要对启动矩频特性进行校核。 步进电机启动有突跳启动和升速启动。突跳启动时加速力矩很大,启动时丢步是不可避免的。因此很少用。而升速启动过程中只要升速时间足够长,启动过程缓慢,空载启动力矩中的加速力矩不会很大。一般不会发生丢步现象。(四)进给机构支承设计1.螺杆的支承形式滚珠丝杠的支承和支承方式将影响丝杠副的刚度,因此,对运动精度要求高时应审慎的加以选择。常见的支承形式有以下几种:丝杠一端安装两个深沟球轴承或者角接触球轴承或者圆锥滚子轴承的称为固定支承;螺母相当于固定支承。安装一个深沟球轴承或者角接触球轴承或者圆锥滚子轴承的称为铰支承;因此丝杠的支承方式有两端固定,一端固定,一端铰支,一端固定、一端自由,两端铰支,一端固定、一端铰支几种。本次采用的是两端固定形式支承2.螺杆的支承方式螺杆的支承方式有以下四种:(1)双推自由支承:将两个方向相反的推力球轴承和两个深沟球轴承装在一端,另一端自由特点:适用于短螺杆。(2)双推支承 将两个方向相反的推力球轴承和两个深沟球轴承装在一端,另一端装一个或两个深沟球轴承。特点:螺杆水平安装时,可减少或避免因自重产生的弯曲或高速运转时,自由端的晃动。适用于长螺杆。(3)单推单推或双推单推 两端各装一个方向相反的推力球轴承和一个深沟球轴承或一端装两个方向相反的推力球轴承和两个深沟球轴承,另一端装一个推力球轴承。 特点可预拉伸螺杆,以减少或消除螺杆水平安装时,因自重产生的弯曲,当轴承预紧力大于螺杆载荷的1/3时,螺杆拉压刚度可提高4倍,且不会承受压力,无失稳现象。(4)双推双推 两端各装两个方向相反的推力球轴承和两个深沟球轴承 特点:优点与单推单推式相同,当超过预计温度时,不会因螺杆伸长使轴承产生间隙,缺点是调整较复杂。四、数控系统设计(一) 数控系统总体方案的拟定机电一体化控制系统由硬件系统和软件系统两大部分组成.控制系统的控制对象主要包括各种机床,如车床、铣床、磨床等等.控制系统的基本组成如下图所示:通信接口软件微机 步进电机驱动电路步进电机机床开关量控制电路主运动驱动电路主轴电动机 图6.2 控制系统框图(二)数控系统硬件的电路设计1、 单片机设计单片机通常是指芯片本身,它是由芯片制造商生产的,在它上面集成的是一些作为基本组成部分的运算器电路、控制器电路、存储器、中断系统、定时器/计数器以及输入/输出口电路等。但一个单片机芯片并不并能把计算机的全部电路都集成到其中,有些元件如复位电路的石英晶体、电阻、电容等只能以散件的形式出现。此外,在实际的控制应用中,常常需要扩展外围电路和外围芯片。通常所说的单片机系统都是为实现某一控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统。在单片机系统中,单片机处于核心地位,是构成单片机系统的硬件和软件基础。(1)MCS-51系列单片机的设计MCS-51系列单片机的所有产品都含有8051除程序存贮器外的基本硬件,都是在8051的基本上改变部分资源(程序存贮器、数据存贮器、I/O口、定时/计数器及一些其他特殊部件)。在控制系统设计中,我们采用的是8031,8031可寻址64KB字节程序存贮器和64KB字节数据存贮器。内部没有程序存贮器,必须外接EPROM程序存贮器。8031采用40条引脚的双列直插式封装(DIP),引脚和功能分为三部分。a.电源及时钟引脚此部分引脚包括电源引脚Vcc、Vss及时钟引脚XTAL1、XTAL2。电源引脚接入单片机的工作电源。Vcc(40脚):接+5V电源。Vss(20脚):接地。时钟引脚(18、19脚):外接晶体时与片内的反相放大器构成一个振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。XTAL1(19脚):接外部晶体的一个引脚。在单片机内部,它是一个反相放大器的输入端。当采用外接晶体振荡器时,此引脚应接地。XTAL2(18脚):接外部晶体的另一端,在单片机内部接至反相放大器的输出端。若采用外部振荡器时,该引脚接受振荡器的信号,即把信号直接接至内部时钟发生器的输入端。b.控制引脚它包括RST、ALE、等。此类引脚提供控制信号,有些引脚具有复用功能。RST/VPD(9脚):当振荡器运行时,在此引脚加上两个机器周期的高电平将使单片机复位(RST)。复位后应使此引脚电平为0.5V的低电平,以保证单片机正常工作。掉电期间,此引脚可接备用电源(VPD),以保持内部RAM中的数据不丢失。当Vcc下降到低于规定值,而VPD在其规定的电压范围内(50.5)V)时,VPD就向内部RAM提供备用电源。ALE/(30脚):当单片机访问外部存贮器时,ALE(地址锁存允许)输出脉冲的下降沿用于锁存16位地址的低8位。即使不访问外部存贮器,ALE端仍有周期性正脉冲输出,其频率为振荡器频率的1/6。但是,每当访问外部数据存贮器时,在两个机器周期中ALE只出现一次,即丢失一个ALE脉冲。ALE端可以驱动8个TTL负载。(29脚):此输出为单片机内访问外部程序存贮器的读选通信号。在从外部程序存贮器指令(或常数)期间,每个机器周期两次有效。但在此期间,每当访问外部数据存贮器时,这两次有效的信号不出现。同样可以驱动8个TTL负载。/Vpp(31脚):当端保持高电平时,单片机访问的是内部程序存贮器,但当PC值超过某值时,将自动转向执行外部程序存贮器内的程序。当端保持低电平时,则不管是否有内部程序存贮器而只访问外部程序存贮器。对8031来说,因其无内部程序存贮器。所以该引脚必须接地,即此时只能访问外部程序存贮器。c.输入/输出引脚输入/输出(I/O)口引脚包括P0口、P1口、P2口和P3口。P0口(P0.0-P0.7):为双向8为三态I/O口,当作为I/O口使用时,可直接连接外部I/O设备。它是地址总线低8位及数据总线分时复用口,可驱动8个TTL负载。一般作为扩展时地址/数据总线口使用。P1口(P1.0-P1.7):为8位准双向I/O口,它的每一位都可以分别定义为输入线或输出线(作为输入口时,锁存器必须置1),可驱动4个TTL负载。P2口(P2.0-P2.7):为8位准双向I/O口,当作为I/O口使用时,可直接连接外部I/O设备。它是与地址总线高8位复用,可驱动4个TTL负载,一般作为扩展时地址总线的高8位使用。P3口(P3.0-P3.7):为8位准双向I/O口,是双功能复用口,可驱动4个TTL负载。(2)MCS-51单片机的时钟电路时钟电路是计算机的心脏,它控制着计算机的工作节奏.MCS-51片内有一个反相放大器,XTAL1、XTAL2引脚分别为该反相放大器的输入端和输出端,该反相放大器与片外晶体或陶瓷谐振器一起构成了一个自激振荡器,产生的时钟送至单片机内部的各个部件.单片机的时钟产生方式有内部时钟方式和外部时钟方式两种,大多单片机应用系统采用内部时钟方式.最常用的内部时钟方式采用外接晶体和电容组成的并联谐振回路,不论是HMOS还是CHMOS型单片机,其并联谐振回路及参数相同.如图所示:图7.1 内部时钟方式的时钟电路MCS-51单片机允许的振荡晶体可在1.2MHz-24MHz之间可以选择,一般取11.0592MHz.电容C1、C2的取值对振荡频率输出的稳定性、大小及振荡电路起振速度有少许影响.C1、C2可在20pF-100pF之间选择,一般当外接晶体时典型取值为30pF,外接陶瓷谐振器时典型取值为47pF,取60pF-70pF时振荡器有较高的频率稳定性.在设计印刷电路板时,晶体或陶瓷谐振器和电容应尽量靠近单片机XTAL1、XTAL2引脚安装,以减少寄生电容,更好地保证振荡器稳定和可靠的工作.为了提高温度稳定性,应采用NPO电容.(3)MCS-51单片机的复位电路计算机在启动运行时都需要复位,使中央处理器CPU和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作.单片机的复位都是靠外部电路实现的,MCS-51单片机有一个复位引脚RST,高电平有效.它是施密特触发输入,当振荡器起振后,该引脚上出现两个机器周期(即24个时钟周期)以上的高电平,使器件复位,只要RST保持高电平,MCS-51便保持复位状态.此时ALE ,P0,P1,P2,P3口都输出高电平.RST变位低电平后,退出复位状态,CPU从初始状态开始工作.复位操作不影响片内RAM的内容.MCS-51单片机通常采用上电自动复位和按钮复位两种方式.通常因为系统运动等的需要,常常需要人工按钮复位,如图 所示:图7.2 上电按钮复位电路对于CMOS型单片机因RST引脚的内部有一个拉低电阻,故电阻R2可不接.单片机在上电瞬间,RC电路充电,RST引脚端出现正脉冲,只要RST端保持两个机器周期以上的高电平(因为振荡器从起振到稳定大约要10ms),就能使单片机有效复位.当晶体振荡频率为12MHz时,RC的典型值为C=10F,R=8.2K.简单复位电路中,干扰信号易串入复位端,可能会引起内部某些寄存错误复位,这时可在RST引脚上接一去耦电容.上图那上电按钮复位电路只需将一个常开按钮开关并联于上电复位电路,按下开关一定时间就能使RST引脚端为高电平,从而使单片机复位2.系统扩展在以8031单片机为核心的控制系统中必须扩展程序存贮器,用以存放控制程序。同时,单片机内部的存贮器容量较小,不能满足实际需要,还要扩展数据存贮器。这种扩展就是配置外部存贮器(包括程序存贮器和数据存贮器)。另外,在单片机内部虽然设置了若干并行I/O接口电路,用来与外围设备连接。但当外围设备较多时,仅有几个内部I/O接口是不够的,因此,单片机还需要扩展输入输出接口芯片。(1) 程序存储器扩展MCS51系列单片机的程序存储器空间和数据存储器空间是相互独立的。程序存储器寻址空间为64kB(0000H0FFFFH),其中8051、8751片内有4kB的ROM或EPROM,8031片内不带ROM。当片没ROM不够采用8031芯片时,需扩展程序存储器。用作程序存储器的器件是EPROM和EEPROM, MCS51单片机扩展外部程序存储器的硬件电路如图图8.1 MCS51单片机扩展外部程序存储器的硬件电路由于MCS51单片机的P0口是分时复用的地址/数据总线,因此,在进行程序存储器扩展时,必须用地址锁存器锁存地址信号。通常地址锁存器可使用带三态缓冲输出的74LS373。当用74LS373作为地址锁存器时,锁存端G可直接与单片机的锁存控制信号端ALE相连,在ALE下降沿进行地址锁存。根据应用系统对程序存储器容量要求的不同,常用的扩展 芯片包括EPROM2716(2kB8)、2732A(4kB8)、2764A(8kB8)、27128A(16kB8)、27256(32kB8)和27512(64kB8)等。以上6种EPROM均为单一5V电源供电,维持电流为35mA40Ma,工作电流为75 mA100 mA,读出时间最大为250ns,均有双列直插式封装形式,A0A15是地址线,不同的芯片可扩展的存储容量的大小不同,因而提供高8位地址的P2端口线的数量各不相同,故2716为A0A10,27152为A0A15;D0D7是数据线;CE是片选线,低电平有效;OE是数据输出选通线;Vpp是编程电源;Vcc是工作电源;PGM是编程脉冲输入端。根据图 程序存储器扩展的原理,以EPROM2764A和锁存器74LS373为例对8031单片机进行程序存储器扩展,其连接图如图所示。 图8.2 8031扩展2764的连接图因为2764A是8kB容量的EPROM,故用到了13根地址线,A0A12。由于系统中只扩展一片程序存储器,所以可将片选端CE直接接地。同时,8031运行所需程序指令来自2764A,要把其EA端接地,否则,8031将不会运行。电擦除可编程只读存储器EEPROM是近年来推出的新产品。其主要特点是能在计算机系统中进行在线修改,并在断电的情况下保持结果。因此,自从EEPROM问世以来,在智能化仪器仪表、控制装置、开发系统中得到了广泛的应用。(2) 数据存储器的扩展8031单片机内部有128字节RAM存储器。CPU对内部的RAM具有丰富的操作指令。但是在用于实时数据采集和处理时,仅靠片内提供的128字节的数据存储器是远远不够的,在这种情况下,可MCS51的扩展功能,扩展外部数据存储器。图 是单片机扩展外部RAM的电路原理图。 图9.1 单片机扩展外部RAM的电路原理图数据存储器只使用WR、RD控制线而不用PSEN。正因为如此,数据存储器与程序存储器地址可完全重叠,均为0000HFFFFH,但数据存储器与I/O口及外围设备是统一编址的,即任何扩展的I/O口以及外围设备均占用数据存储器地址。图 中,P0口为RAM的复用地址/数据线,P2口用于对RAM进行页面寻址(根据其容量不同,所占用的P2端口不同),在对外部RAM读/写期间,CPU产生RD/WR信号。在80314单片机应用系统中,静态RAM是最常用的,由于这种存储器的设计无须考虑刷新问题,因而它与微处理器的接口很简单。最常用的静态RAM芯片有6116(2kB8)和6264(8kB8)。单一5V供电,额定功耗分别为160mW和200mV,典型存取时间均为200ns,均有双列直插式封装,管脚分别为24和28线。图9.2 8031扩展6264的连接图图为6264与8031的硬件连接图。从 图中可以知道:6264的片选I接8031的P2.7,第二片选线CS2接高电平,保持一直有效状态,因6264是8kB容量的RAM,鼓用到了13根地址线。8031在访问6264期间
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!