小学自主课堂案例-公约数与最大公约数

上传人:zhu****ng 文档编号:143951921 上传时间:2022-08-26 格式:DOC 页数:3 大小:15.01KB
返回 下载 相关 举报
小学自主课堂案例-公约数与最大公约数_第1页
第1页 / 共3页
小学自主课堂案例-公约数与最大公约数_第2页
第2页 / 共3页
小学自主课堂案例-公约数与最大公约数_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
小学自主课堂案例公约数与最大公约数刘治媚一 指导思想人教版教材中对最大公约数认识的编排顺序是:找出两个数的约数比较,生成公约数、最大公约数的概念会求两个数的最大公约数应用(最大)公约数知识解决实际问题。沿这种思路设计教学,同学对新知的接受常是被动的,并且也只能达成“知识与技能”单一教学目标。数学课程规范“强调从同学已有的生活经验动身,让同学亲身经历将实际问题笼统成数学模型并进行解释与应用的过程,进而使同学获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步和发展。”在这新的教学理念指导下,怎样结合同学的实际生活,在运用知识解决问题的实践操作中,经历知识发生过程,萌发发明新知需要,并完成对新知的建构呢?二 教案解读1观察感知生活数学学习约数与倍数之后,安排同学回家观察客厅或卧室,也可到广场上,看看所贴的地板砖数是否正好为整数块数(没有切割)。假如是,沿着长铺了多少块?沿着宽铺了多少块?丈量一方砖的边长和房间的长、宽,方砖的边长与房间的长、宽分别是什么关系?2考虑理解数学问题课堂教学伊始,投影出贴了地板砖的长方形广场平面图。同学能够用约数、倍数知识解释课前观察到的数学问题:长方形广场的长是方砖边长的m倍,宽是方砖边长的n倍。也可以说方砖的边长既是长方形长的约数,又是长方形宽的约数。与师生交流之后,再出示一个新的问题:我们学校的画廊高1.2米(12分米),长是3米(30分米),美术组的同学想在上面正好贴满大小相同的正方形装饰画,这种装饰画的边长应为多少分米(取整数)?会有几种不同的正方形?3实验建构数学模型同学在对画廊设计问题处于愤悱状态之时,老师借用长方形纸作示范引导:这是一张长15cm,宽10cm的长方形纸,我们可以把它设想为缩小后的学校画廊,(当然也可以想象为客厅或广场的地面)老师在这张长方形纸上设计了两种不同的小正方形,(实物投影出示另一张画了方格的长方形纸)其中一面的小正方形边长为1cm,另一面的小正方形边长为5cm,它们同样整分了这张长方形纸而无剩余。想一想,小正方形边长除了1cm和5cm以外,还会有其它整厘米数吗?根据刚才自身的理解,请拿出课前准备好的一张长12cm、宽8cm的长方形纸,仿效老师的做法,设计能正好整分这个长方形纸的小正方形,在纸上画一画,看一看有几种不同的画法设计,再想一想其中有什么规律?4总结发明数学新知同学完成上一步操作以后,投影展示同学设计的作品,(会有三种不同的设计:小正方形的边长分别为1cm、2cm、4cm)引导同学表述自身的想法,交流发现规律:因为小正方形要正好整分大长方形,那么,小正方形的边长既要能整除大长方形的长,也要能整除长方形的宽。也就是说小正方形的边长数1、2、4、既是12的约数,也是8的约数。同理,1和5既是15的约数,也是10的约数。至此,通过铺方砖的生活常识和几何中长、正方形关系的设计操作,同学实际上已初步感知和理解了公约数的存在和其在生活中的应用。此时,再引导同学通过命名的形式笼统出新的数学概念公约数:请你根据1、2、4分别与12和8共有的关系给这几个数取一个新的名称,师板书:1、2、4是12和8的( ),待同学大都满意之后再板书:4是12和8的( )。板书设计如下:(单位:厘米)1是10的约数,也是15的约数 1是12的约数,也是8的约数5是10的约数,也是15的约数 2是12的约数,也是8的约数4是12的约数,也是8的约数1、5是15和10的( 公约数 ) 1、2、4是12和8的(公约数 )5是15和10的( 最大公约数 ) 4是12和8的(最大公约数) 5应用解决实际问题先解决画廊的装饰画设计,再解答小明分蛋糕的疑难:小明过生日的时候,妈妈给他订了一个大的长方体蛋糕,长42 cm、宽30 cm、高24 cm,小明想把它均匀地切成大小相同的正方体后,再送给每一位客人,他怎样切才干使蛋糕尽可能大一些?至少可以切成多少块?三、课后反思日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。”从这个教学的设计中我们可以看到,教学中不只是让同学接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让同学在经历“数学家”解决问题的过程中去理解、去感受一种数学的思想和观念数学化思想。同学先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而考虑并尝试解决画廊内装饰画的设计,同学自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导同学自身发明了“公约数”与“最大公约数”的概念。数学化思想观念是指用数学眼光去认识和处置周围事物或数学问题,可以培养同学良好的“用数学”意识,使数学关系成为同学的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成同学思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,同学学到的只是知识的堆砌,没有自主的发展和对数学实质的领悟。教材只是供教学使用的一种资料,不是一成不变的经典。面对新课程规范,教师要有强烈的课程资源开发意识,不只自身能针对学习内容开发出有利同学学习和发展的新资料,而且要善于引导同学去寻找和发现身边的数学学习资源。在本节课的教学中,除了教师提示的卧室(广场)地板砖,画廊设计、分蛋糕之外,同学也列举了许多类似的现象:教室内水磨石地面,银行墙壁上的方形面砖,家中客厅顶部木质方块的装饰同学在资源的识别与解释中,逐步掌握了(最大)公约数的知识,为今后发明性的运用知识打下了良好的基础。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!