4.2提公因式法(2)【沐风教学】

上传人:8** 文档编号:127198338 上传时间:2022-07-29 格式:PPT 页数:18 大小:800.50KB
返回 下载 相关 举报
4.2提公因式法(2)【沐风教学】_第1页
第1页 / 共18页
4.2提公因式法(2)【沐风教学】_第2页
第2页 / 共18页
4.2提公因式法(2)【沐风教学】_第3页
第3页 / 共18页
点击查看更多>>
资源描述
1优讲课堂1、多项式的第一项系数为负数时,_ _ _复习:提公因式法2、公因式的系数是_;_;3、字母取多项式各项中都含有的_;_;4、相同字母的指数取各项中最小的一个,即_._.多项式各项系数的最大公因数多项式各项系数的最大公因数相同的字母相同的字母最低次幂最低次幂先提取先提取“-”-”号,注意多项式的各项变号;号,注意多项式的各项变号;2优讲课堂1、下列等式变形中是因式分解的是()A.18a3b=3a26ab B.a2+3a-1=a(a+3)-1 C.a(a+1)=a2+a D.x2-4y2=(x-2y)(x+2y)2、多项式6a2b2-8a3bc3的公因式是 。3、将下列各式进行因式分解.(2)8ab2-16a2b3(3)-25ab-15a2c(4)-a3b2-2a2b2+ab(1)am-bm课前小测D2a2bm(a-b)8ab2(1-2ab)=-5a(5b+3ac)=-ab(a2b+2ab-1)=-(25ab+15a2c)=-(a3b2+2a2b2-ab)3优讲课堂提问:课前小测中的 am-bm,若将式子中的m改成 x-3,又如何分解呢?a m -b m (x-3)(x-3)=(a-b)m(x-3)规律:类似a(c+d)+b(c+d)的形式的分解因式,实际上与我们学过的am+bm形式类似,只需将式子中的(c+d)看成以前的m即可。a(x-3)+b(x-3)=(x-3)(a+b)你能根据上面的方法,分解下面多项式吗?你能根据上面的方法,分解下面多项式吗?将a换成a+2呢?(a+2)(x-3)+b(x-3).=(x-3)(a+2+b)4优讲课堂将将a换成换成a+1;b换成换成a-5呢?呢?(a+1)(x-3)+(a-5)(x-3).=(x-3)(a+1+a-5)=(x-3)(2a-4)式子:式子:3(2a+1)2-9(2a+1)如何分解?如何分解?=3(2a+1)(2a+1-3)分解因式:a(x-3)+b(x-3)=2(x-3)(a-2)=3(2a+1)(2a-2)=6(2a+1)(a-1)5优讲课堂(1)a(2x+3)+2b(2x+3)=(2x+3)(a+2b)(2)4x(a+b)-2y(a+b)=2(a+b)(2x-y)(3)(3a+2)(x-y)-(6a-1)(x-y)=(x-y)(3a+2)-(6a-1)=(x-y)(3a+2-6a+1)=(x-y)(-3a+3)=-3(x-y)(a-1)6优讲课堂 公因式公因式 是是多项式多项式形式,怎样形式,怎样运用提公运用提公因式法分解因式?因式法分解因式?想一想类似a(c+d)+b(c+d)的形式的分解因式,实际上与我们学过的am+bm形式类似,只需将式子中的(c+d)看成以前的m即可。7优讲课堂 在下列各式等号右边的括号前填入在下列各式等号右边的括号前填入“+”或或“”号,使等式成立:号,使等式成立:(1)(a-b)=_(b-a);(2)(a-b)2=_(b-a)2;(3)(a-b)3=_(b-a)3;(4)(a-b)4=_(b-a)4;(5)(a+b)5=_(b+a)5;(6)(a+b)6=_(b+a)6.+(7)(a+b)=_(-b-a);-(8)(a+b)2=_(-a-b)2.+8优讲课堂由此可知规律:由此可知规律:(1)a-b(1)a-b 与与 -a+b-a+b 互为相反数互为相反数.(a-b)n=(b-a)n (n是偶数是偶数)(a-b)n=-(b-a)n (n是奇数是奇数)(2)a+b(2)a+b与与b+a b+a 互为相同数互为相同数,(a+b)n=(b+a)n (n是整数是整数)a+b a+b 与与 -a-b -a-b 互为相反数互为相反数.(-a-b)n=(a+b)n (n是偶数是偶数)(-a-b)n=-(a+b)n (n是奇数是奇数)9优讲课堂练习一练习一1.在下列各式右边括号前添上适当的符号,使左边与右边相等.(1)a+2=_(2+a)(2)-x+2y=_(2y-x)(3)(m-a)2=_(a-m)2 (4)(a-b)3=_(-a+b)3(5)(x+y)(x-2y)=_(y+x)(2y-x)+-10优讲课堂2.2.判断下列各式是否正确判断下列各式是否正确?(1)(y-x)2=-(x-y)2(2)(3+2x)3=-(2x+3)3(3)a-2b=-(-2b+a)(4)-a+b=-(a+b)(5)(a-b)(x-2y)=(b-a)(2y-x)否否否否否否否否对对11优讲课堂例例1.1.把把 a(x-3)+2b(x-3)a(x-3)+2b(x-3)分解因式分解因式.解:解:a(x-3)+2b(x-3)a(x-3)+2b(x-3)=(x-3x-3)(a+2b)(a+2b)分析:多项式可看成分析:多项式可看成a(x-3)a(x-3)与与 2b(x-3)2b(x-3)两项。公因式为两项。公因式为x-3x-3例题解析例题解析12优讲课堂例例2.2.把把a(x-y)+b(y-x)a(x-y)+b(y-x)分解因式分解因式.解:解:a(x-y)+b(y-x)a(x-y)+b(y-x)=a(x-y)=a(x-y)-b(b(x-yx-y)=(x-y)(a-b)=(x-y)(a-b)分析:多项式可看成a(x-y)与+b(y-x)两项。其中X-y与y-x互为相反数,可将+b(y-x)变为-b(x-y),则a(x-y)与-b(x-y)公因式为 x-y13优讲课堂例例3.3.把把6(m-n)6(m-n)3 3-12(n-m)-12(n-m)2 2分解因式分解因式.解:解:6(m-n)6(m-n)3 3-12(n-m)-12(n-m)2 2 6(m-n)6(m-n)3 3-12(-12(m-nm-n)2 2 6(m-n)6(m-n)2 2(m-n-2)(m-n-2)分析:其中(m-n)与(n-m)互为相反数.可将-12(n-m)2变为-12(m-n)2,则6(m-n)3与-12(m-n)2 公因式为6(m-n)214优讲课堂例4.把6(x+y)(y-x)2-9(x-y)3分解因式.解:解:6(x+y)(y-x)2-9(x-y)3 =6(x+y)(x-y)2-9(x-y)3 =3(x-y)22(x+y)-3(x-y)=3(x-y)2(2x+2y-3x+3y)=3(x-y)2(-x+5y)=3(x-y)2(5y-x)=-3(x-y)2(x-5y)-15优讲课堂(2)5x(a-b)2+10y(b-a)2)3(23)(6)(12mnnm-)1()xyb-)yx a-分解因式:分解因式:(4)a(a+b)(a-b)-a(a+b)2练习二练习二=a(x-y)+b(x-y)=(x-y)(a+b)=5x(a+b)2+10y(a-b)2=12(m-n)3-6(m-n)2=a(a+b)(a-b)-(a+b)=6(m-n)22(m-n)-1=6(m-n)2(2m-2n-1)=-2ab(a+b)=5(a+b)2(x+2y)16优讲课堂分解因式:分解因式:(5)mn(m+n)-m(n+m)2(6)2(a-3)2-a+3(7)a(x-a)+b(a-x)-c(x-a)练习二练习二)8(32)(6)(2abba-=mn(m+n)-m(m+n)2=2(a-3)2-(a-3)=a(x-a)-b(x-a)-c(x-a)=2(a-b)2(1+3a-3b)=-m(m+n)n-(m+n)=2(a-3)2(a-3)-1=(a-3)(2a-7)=(x-a)(a-b-c)=2(a-b)2+6(a-b)3=2(a-b)21-3(a-b)=-m2(m+n)17优讲课堂课堂小结 两个只有符号不同的多项式是否有关系,有如下判断方法:(1)当相同字母前的符号相同时,则两个多项式相等.如:a-b 和-b+a 即-b+a=a-b(2)当相同字母前的符号均相反时,则两个多项式互为相反数.如:a-b 和 b-a 即 a-b=-(a-b)18优讲课堂
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!