河北省正定中学2020届高考数学一轮复习 圆锥曲线的综合问题学案 理(无答案)

上传人:艳*** 文档编号:111210770 上传时间:2022-06-20 格式:DOC 页数:10 大小:499KB
返回 下载 相关 举报
河北省正定中学2020届高考数学一轮复习 圆锥曲线的综合问题学案 理(无答案)_第1页
第1页 / 共10页
河北省正定中学2020届高考数学一轮复习 圆锥曲线的综合问题学案 理(无答案)_第2页
第2页 / 共10页
河北省正定中学2020届高考数学一轮复习 圆锥曲线的综合问题学案 理(无答案)_第3页
第3页 / 共10页
点击查看更多>>
资源描述
河北省正定中学2020届高考数学一轮复习 圆锥曲线的综合问题学案 理(无答案)一、 定点与定值问题1、已知椭圆:,抛物线:,且、的公共弦过椭圆的右焦点当轴时,求、的值,并判断抛物线的焦点是否在直线上;是否存在、的值,使抛物线的焦点恰在直线上?若存在,求出符合条件的、的值;若不存在,请说明理由.2、已知,椭圆C过点A(1,),两个焦点为(1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 3、如下图,过抛物线y2=2px(p0)上一定点P(x0,y0)(y00),作两条直线分别交抛物线于A(x1,y1)、B(x2,y2).(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.4.已知椭圆C的方程是+=1(ab0).设斜率为k的直线l交椭圆C于A、B两点,AB的中点为M.证明:当直线l平行移动时,动点M在一条过原点的定直线上.二、 最值与范围问题1、已知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。2、已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 3、设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,求的最大值和最小值;设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围.4. 点、分别是椭圆长轴的左、右端点,点是椭圆的右焦点,点在椭圆上,且位于轴上方,.求点的坐标;设是椭圆长轴上的一点,到直线的距离等于,求椭圆上的点到点的距离的最小值.5、在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和 ()求点P的轨迹C;()设过点F的直线l与轨迹C相交于M,N两点,求线段MN长度的最大值。三、 面积问题1.已知两定点满足条件的点的轨迹是曲线,直线与曲线交于、两点。如果且曲线上存在点,使求的值和的面积.2、已知双曲线C的方程为,离心率,顶点到渐近线的距离为。 (1)求双曲线C的方程;(2)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围。四. 探索性问题1、已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点()证明:抛物线在点处的切线与平行;()是否存在实数使,若存在,求的值;若不存在,说明理由2、在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和求的取值范围;设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由3、设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1R2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.4、已知直线经过椭圆 的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线与直线分别交于两点.(I)求椭圆的方程;()求线段MN的长度的最小值;()当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!