(渝皖琼)2022-2023学年高中数学 第一章 立体几何初步 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学案 北师大版必修2

上传人:xt****7 文档编号:106872499 上传时间:2022-06-14 格式:DOC 页数:13 大小:413.50KB
返回 下载 相关 举报
(渝皖琼)2022-2023学年高中数学 第一章 立体几何初步 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学案 北师大版必修2_第1页
第1页 / 共13页
(渝皖琼)2022-2023学年高中数学 第一章 立体几何初步 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学案 北师大版必修2_第2页
第2页 / 共13页
(渝皖琼)2022-2023学年高中数学 第一章 立体几何初步 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学案 北师大版必修2_第3页
第3页 / 共13页
点击查看更多>>
资源描述
(渝皖琼)2022-2023学年高中数学 第一章 立体几何初步 7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积学案 北师大版必修2学习目标1.掌握柱体、锥体、台体的体积计算公式,会利用它们求有关几何体的体积.2.掌握求几何体体积的基本技巧知识点一柱、锥、台体的体积公式几何体体积公式柱体圆柱、棱柱V柱体ShS柱体底面积,h柱体的高锥体圆锥、棱锥V锥体ShS锥体底面积,h锥体的高台体圆台、棱台V台体(S上S下)hS上、S下台体的上、下底面面积,h高知识点二柱体、锥体、台体的体积公式之间的关系VShV(SS)hVSh.1锥体的体积等于底面面积与高之积()2台体的体积可转化为两个锥体的体积之差()类型一多面体的体积例1如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QAABPD.(1)证明:PQ平面DCQ;(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值(1)证明由题知四边形PDAQ为直角梯形因为QA平面ABCD,QA平面PDAQ,所以平面PDAQ平面ABCD,交线为AD.又四边形ABCD为正方形,DCAD,所以DC平面PDAQ,可得PQDC.在直角梯形PDAQ中可得DQPQPD,则PQQD.又DCQDD,DC,QD平面DCQ,所以PQ平面DCQ.(2)解设ABa.由题设知AQ为棱锥QABCD的高,所以棱锥QABCD的体积V1a3.由(1)知PQ为棱锥PDCQ的高而PQa,DCQ的面积为a2,所以棱锥PDCQ的体积V2a3.故棱锥QABCD的体积与棱锥PDCQ的体积的比值为1.反思与感悟求几何体体积的四种常用方法(1)公式法:规则几何体直接代入公式求解(2)等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱、三棱柱补成四棱柱等(4)分割法:将几何体分割成易求解的几部分,分别求体积跟踪训练1如图,在三棱柱中,若E,F分别为AB,AC的中点,平面将三棱柱分成体积为的两部分,那么_.答案75解析设三棱柱的高为h,底面的面积为S,体积为V,则VV1V2Sh.因为E,F分别为AB,AC的中点,所以S,hSh,ShSh,故.类型二旋转体的体积例2体积为52 cm3的圆台,一个底面面积是另一个底面面积的9倍,求截得这个圆台的圆锥的体积解由底面面积之比为19知,体积之比为127.截得的小圆锥与圆台体积比为126,小圆锥的体积为2 cm3,故原来圆锥的体积为54 cm3.反思与感悟要充分利用旋转体的轴截面,将已知条件尽量归结到轴截面中求解,分析题中给出的数据,列出关系式后求出有关的量,再根据几何体的体积公式进行运算、解答(1)求台体的体积,其关键在于求高,在圆台中,一般把高放在等腰梯形中求解(2)“还台为锥”是求解台体的体积问题的重要思想,作出截面图,将空间问题平面化,是解决此类问题的关键跟踪训练2设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60,轴截面中的一条对角线垂直于腰,则圆台的体积为_考点题点答案21解析设上,下底面半径,母线长分别为r,R,l.作A1DAB于点D,则A1D3,A1AB60,又BA1A90,BA1D60,AD,Rr.BDA1Dtan 603,Rr3. R2,r,而h3.V圆台h(R2Rrr2)3(2)22()221.圆台的体积为21.类型三几何体体积的求法命题角度1等体积法例3如图,已知ABCDA1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1D1EF的体积考点柱体、锥体、台体的体积题点锥体的体积解又三棱锥FA1D1E的高为CDa,反思与感悟(1)三棱锥的每一个面都可当作底面来处理(2)利用等体积法可求点到面的距离跟踪训练3如图所示,正方体ABCDA1B1C1D1的棱长为1,在三棱锥A1ABD中,求A到平面A1BD的距离d.考点题点解在三棱锥A1ABD中,AA1是三棱锥A1ABD的高,ABADAA11,A1BBDA1D.121d,d.命题角度2割补法例4如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EFAB,EF2,EF与平面AC的距离为3,求该多面体的体积考点题点解如图,连接EB,EC,AC.四棱锥EABCD的体积VEABCD42316.因为AB2EF,EFAB,所以SEAB2SBEF.所以VFEBCVCEFBVCABEVEABCVEABCD4.所以该多面体的体积VVEABCDVFEBC16420.反思与感悟通过“割补法”解决空间几何体的体积问题,需要思路灵活,有充分的空间想象力,什么时候“割”,什么时候“补”,“割”时割成几个图形,割成什么图形,“补”时补上什么图形,都需要灵活的选择跟踪训练4如图所示,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积考点题点解用一个完全相同的几何体把题中几何体补成一个圆柱,如图所示,则圆柱的体积为22520,故所求几何体的体积为10.1.已知高为3的棱柱ABCA1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1ABC的体积为()A. B.C. D.考点柱体、锥体、台体的体积题点锥体的体积答案D解析VSh3.2圆锥的轴截面是等腰直角三角形,侧面积是16,则圆锥的体积是()A. B. C64 D128考点柱体、锥体、台体的体积题点锥体的体积答案B解析设圆锥的底面半径为r,母线长为l,由题意知2r,即lr,S侧rlr216,解得r4.l4,圆锥的高h4,圆锥的体积为VSh424.3棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是()A186 B62C24 D18考点题点答案B解析V(24)362.4已知某圆台的上、下底面面积分别是,4,侧面积是6,则这个圆台的体积是_考点柱体、锥体、台体的体积题点台体的体积答案解析设圆台的上、下底面半径分别为r和R,母线长为l,高为h,则S上r2,S下R24.r1,R2,S侧(rR)l6.l2,h,V(122212).5如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降_cm.考点题点答案0.6解析将铅锤取出后,水面下降部分实际是圆锥的体积设水面下降的高度为x cm,则2x220,得x0.6 cm.1柱体、锥体、台体的体积之间的内在关系为V柱体Sh V台体h(SS)V锥体Sh.2在三棱锥ABCD中,若求点A到平面BCD的距离h,可以先求VABCD,h.这种方法就是用等体积法求点到平面的距离,其中V一般用换顶点法求解,即VABCDVBACDVCABDVDABC,求解的原则是V易求,且BCD的面积易求3求几何体的体积,要注意分割与补形将不规则的几何体通过分割或补形将其转化为规则的几何体求解一、选择题1.如图,ABCABC是体积为1的棱柱,则四棱锥CAABB的体积是()A. B. C. D.考点题点答案C解析VCABCVABCABC,VCAABBVABCABC.2.如图,已知正三棱锥SABC,D,E分别为底面边AB,AC的中点,则四棱锥SBCED与三棱锥SABC的体积之比为()A12 B23C34 D43答案C解析两锥体高相等,因此V四棱锥SBCEDV三棱锥SABCS四边形BCEDSABC34.3已知圆锥的母线长为8,底面圆的周长为6,则它的体积是()A9 B9C3 D3考点题点答案C解析设圆锥的底面圆的半径为r,高为h,则2r6,r3.h,Vr2h3.4.如图,在梯形ABCD中,ABC,ADBC,BC2AD2AB2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D2考点组合几何体的表面积与体积题点柱、锥、台、球切割的几何体的表面积与体积答案A解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为122121.5若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为()A2 B2 C. D.考点题点答案A解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为ABC的边长,且SABCAB2,AB2,AB2.6如图所示,正方体ABCDA1B1C1D1的棱长为1,则三棱锥D1ACD的体积是()A. B.C. D1答案A解析三棱锥D1ADC的体积VSADCD1DADDCD1D.7将若干毫升水倒入底面半径为2 cm的圆柱形器皿中,量得水面高度为6 cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面高度为()A6 cm B6 cmC2 cm D3 cm考点柱体、锥体、台体的体积题点锥体的体积答案B解析设圆锥中水的底面半径为r cm,由题意知r2r226,得r2,水面的高度是26 cm.8正三棱柱ABCA1B1C1的底面边长为2,侧棱长为,D为BC的中点,则三棱锥AB1DC1的体积为()A1 B. C3 D.考点题点答案A解析在正ABC中,D为BC中点,则有ADAB,2.又平面BB1C1C平面ABC,平面BB1C1C平面ABCBC,ADBC,AD平面ABC,AD平面BB1C1C,即AD为三棱锥AB1DC1底面上的高AD1.二、填空题9设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等,且,则的值是_考点题点答案解析设两个圆柱的底面半径和高分别为r1,r2和h1,h2,由,得,则.由圆柱的侧面积相等,得2r1h12r2h2,即r1h1r2h2,所以.10.如图,在ABC中,AB8,BC10,AC6,DB平面ABC,且AEFCBD,BD3,FC4,AE5.则此几何体的体积为_考点题点答案96解析用“补形法”把原几何体补成一个直三棱柱,使AABBCC8,所以V几何体V三棱柱SABCAA24896.11.如图,在三棱柱A1B1C1ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥AFED的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1V2的值为_考点柱体、锥体、台体的表面积与体积题点其他求体积、表面积问题答案解析设三棱柱的高为h,F是AA1的中点,三棱锥FADE的高为,D,E分别是AB,AC的中点,SADESABC,V1SADE,V2SABCh,.三、解答题12在四边形ABCD中,A(0,0),B(1,0),C(2,1),D(0,3),绕y轴旋转一周,求所得旋转体的体积解如图为所得旋转体,由一个圆锥和一个圆台组成C(2,1),D(0,3),圆锥的底面半径r2,高h2.V圆锥r2h222.B(1,0),C(2,1),圆台的两个底面半径R2,R1,高h1.V圆台h(R2R2RR)1(221221),VV圆锥V圆台5.13.如图所示是一个边长为5的正方形,剪去阴影部分得到圆锥的侧面和底面展开图,求该圆锥的体积考点题点解设圆锥的底面半径为r,母线长为l,高为h,则依题意有2l2r,l4r.又ACOCOArrl(5)r,且AC(5),(5)r(5),r,l4,h,V圆锥r2h()2.故该圆锥的体积为.四、探究与拓展14若正三棱台A1B1C1ABC的两底面边长分别为2,8,侧棱长等于6,则此三棱台的体积V_.答案42解析如图,设D1,D分别为A1B1,AB的中点,O1,O为上、下两底面的中心,则O1O为棱台的高h,O1C1,OC,作C1HOC于点H,则C1Hh,且CH2,故hC1H2.,SABC16,V42.15.在三棱台ABCA1B1C1中,ABA1B112,则三棱锥A1ABC,BA1B1C,CA1B1C1的体积之比是多少?考点题点解设棱台的高为h,SABCS,则SABChSh,又V台h(S4S2S)Sh,V台ShShShSh.124.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!