资源描述
2022年人教版A版高中数学选修2-2第一章 1-7定积分的简单应用教案教学目标:1、知识与技能:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;让学生深刻理解定积分的几何意义以及微积分的基本定理;初步掌握利用定积分求曲边梯形的几种常见题型及方法;体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。2、过程与方法: 借助于几何直观定积分的基本思想,了解定积分在实际中的应用3、情感、态度与价值观: 通过定积分在几何和物理中的应用,进一步感受极限的思想教学重点:定积分在几何和物理中的应用教学难点:定积分在几何和物理中的应用教学过程:定积分的应用(一)利用定积分求平面图形的面积例1计算由两条抛物线和所围成的图形的面积.解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=ABCDO例2计算由直线,曲线以及x轴所围图形的面积S.解:作出直线,曲线的草图,所求面积为图阴影部分的面积解方程组得直线与曲线的交点的坐标为(8,4) . 直线与x轴的交点为(4,0). 因此,所求图形的面积为S=S1+S2.例3.求曲线与直线轴所围成的图形面积。 答案: (二)定积分在物理中应用(1)求变速直线运动的路程我们知道,作变速直线运动的物体所经过的路程s,等于其速度函数v=v (t) ( v(t) 0) 在时间区间a,b上的定积分,即例 4。一辆汽车的速度一时间曲线如图1.7 一3 所示求汽车在这1 min 行驶的路程解:由速度一时间曲线可知:因此汽车在这 1 min 行驶的路程是:答:汽车在这 1 min 行驶的路程是 1350m .(2)变力作功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移(单位:m),则力F所作的功为W=Fs .探究如果物体在变力 F(x)的作用下做直线运动,并且物体沿着与 F (x) 相同的方向从x =a 移动到x=b (ab) ,那么如何计算变力F(x)所作的功W呢?与求曲边梯形的面积和求变速直线运动的路程一样,可以用“四步曲”解决变力作功问题可以得到 例5如图17一4 ,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置lm 处,求克服弹力所作的功解:在弹性限度内,拉伸(或压缩)弹簧所需的力 F ( x )与弹簧拉伸(或压缩)的长度 x 成正比,即 F ( x )= kx , 其中常数 k 是比例系数由变力作功公式,得到答:克服弹力所作的功为.练习:1、求直线与抛物线所围成的图形面积。答案:2、求由抛物线及其在点M(0,3)和N(3,0)处的两条切线所围成的图形的面积。 略解:,切线方程分别为、,则所求图形的面积为3、如果1N能拉长弹簧1cm,为了将弹簧拉长6cm,需做功( A ) A 0.18J B 0.26J C 0.12J D 0.28J略解:设,则由题可得,所以做功就是求定积分总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.2、求曲边梯形面积的方法与步骤:(1) 画图,并将图形分割为若干个曲边梯形;(2) 对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3) 确定被积函数;(4) 求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)型区域:由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1);由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2);由两条曲线与直线yabxyabxyabx所围成的曲边梯形的面积:(如图(3);图(1) 图(2) 图(3)(2)型区域:由一条曲线与直线以及轴所围成的曲边梯形的面积,可由得,然后利用求出(如图(4);由一条曲线与直线以及轴所围成的曲边梯形的面积,可由先求出,然后利用求出(如图(5); 由两条曲线与直线所围成的曲边梯形的面积,可由先分别求出,然后利用求出(如图(6);yabxyabxyabx图(4) 图(5) 图(6)四:课堂小结 1、利用定积分求一些曲边图形的面积与体积,即定积分在几何中应用,要掌握几种常见图形面积的求法,并且要注意定积分的几何意义,不能等同于图形的面积,要注意微积分的基本思想的应用与理解。2、定积分在物理学中的应用,要掌握几种常见图形面积的求法,并且要注意定积分的几何意义,不能等同于图形的面积,要注意微积分的基本思想的应用与理解。五、作业:
展开阅读全文