资源描述
第一节随机事件的概率考纲传真1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式1概率(1)定义:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性这时这个常数叫作随机事件A的概率,记作P(A),有0P(A)1.(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值2互斥事件与对立事件(1)互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件(2)对立事件:在每一次试验中,两个事件不会同时发生,并且一定有一个发生的事件A和称为对立事件3概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率:P(A)1.(3)不可能事件的概率:P(A)0.(4)互斥事件的概率加法公式:P(AB)P(A)P(B)(A,B互斥)P(A1A2An)P(A1)P(A2)P(An)(A1,A2,An彼此互斥)(5)对立事件的概率:P()1P(A)基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)事件发生的频率与概率是相同的()(2)在大量的重复实验中,概率是频率的稳定值()(3)对立事件一定是互斥事件,互斥事件不一定是对立事件()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率()答案(1)(2)(3)(4)2(教材改编)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A至多有一次中靶B两次都中靶C只有一次中靶D两次都不中靶D“至少有一次中靶”的对立事件是“两次都不中靶”3将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A必然事件B随机事件C不可能事件D无法确定B抛掷10次硬币正面向上的次数可能为0,1,2,10,都有可能发生,正面向上5次是随机事件4(教材改编)有一个容量为66的样本,数据的分组及各组的频数如下:11.5,15.5),2;15.5,19.5),4;19.5,23.5),9;23.5,27.5),18;27.5,31.5),11;31.5,35.5),12;35.5,39.5),7;39.5,43.5,3.根据样本的频率分布估计,数据落在27.5,43.5内的概率约是_由条件可知,落在27.5,43.5内的数据有11127333(个),故所求概率约是.5(2019济南模拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_0.35事件A抽到一等品,且P(A)0.65,事件“抽到的产品不是一等品”的概率为P1P(A)10.650.35.随机事件之间的关系1在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A至多有一张移动卡B恰有一张移动卡C都不是移动卡D至少有一张移动卡A至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件2对飞机连续射击两次,每次发射一枚炮弹,设A两次都击中飞机,B两次都没击中飞机,C恰有一次击中飞机,D至少有一次击中飞机,其中彼此互斥的事件是_,互为对立事件的是_A与B,A与C,B与C,B与DB与D设I为对飞机连续射击两次所发生的所有情况,因为AB,BC,AC,BD,故A与B,B与C,A与C,B与D为互斥事件而BD,BDI,故B与D互为对立事件规律方法判断互斥、对立事件的两种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件对立事件是互斥事件的充分不必要条件(2)集合法:由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集随机事件的概率与频率【例1】(2016全国卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值解(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.规律方法1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值2随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率 某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.11 000100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.212024(位),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率是P(C)0.24.互斥事件与对立事件概率公式的应用【例2】某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为M,则MABCA,B,C两两互斥,P(M)P(ABC)P(A)P(B)P(C),故1张奖券的中奖概率约为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1,故1张奖券不中特等奖且不中一等奖的概率为.规律方法复杂事件的概率的两种求法(1)直接求法,将所求事件分解为一些彼此互斥的事件,运用互斥事件的概率求和公式计算(2)间接求法,先求此事件的对立事件的概率,再用公式P(A)1P()求解(正难则反),特别是“至多”“至少”型题目,用间接求法就比较简便 某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:派出人数23456概率0.10.460.30.10.04(1)求有4人或5人外出家访的概率;(2)求至少有3人外出家访的概率解(1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,P(CD)P(C)P(D)0.30.10.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,P1P(A)10.10.9.- 7 -
展开阅读全文