八年级数学-勾股定理及其常考题型

上传人:gbs****77 文档编号:9307038 上传时间:2020-04-04 格式:DOCX 页数:6 大小:185.33KB
返回 下载 相关 举报
八年级数学-勾股定理及其常考题型_第1页
第1页 / 共6页
八年级数学-勾股定理及其常考题型_第2页
第2页 / 共6页
八年级数学-勾股定理及其常考题型_第3页
第3页 / 共6页
点击查看更多>>
资源描述
八年级数学 勾股定理及其常考题型 勾股定理也称毕达哥拉斯定理 文字表述 直角三角形两直角边的平方和等于斜边的平方 结合直角三角形图形 用字母 可表示为 如下图 a b 为直角边 c 为斜边 22c 勾股定理揭示了直角三角形三边之间的数量关系 完美地体现了 数形统一 的数学思想 将初中几何与代数很好的联 系起来 因此 学好勾股定理这一知识点对于我们解决数学问题有很大的帮助 下面我们具体来看看初中数学有关勾股 定理的一些常见题型及其解答方法 一 边的计算 1 在 Rt ABC 中 C 90 若 a 6 b 8 则 c 解 因为 所以 c 10 22abc 评论 直接由勾股定理所以得 2 在 Rt ABC 中 C 90 AC 3 BC 4 则斜边上的高 CD 的长为 A B C D 1552527 解 由勾股定理知 AB 5 又因为 S ABC AC BC AB CD12 即 3 4 5 CD 所以 CD 215 评论 通过勾股定理求出斜边 再利用面桥关系求出斜边上的高 3 若一直角三角形两边的长为 12 和 5 则第三边的长为 A 13 B 13 或 C 13 或 15 D 1519 解 当 12 对应的边为斜边时 此时由勾股定理得第三边为 19 当 12 对应的边是直角边时 则第三边为斜边 由 得第三边的长为 1322abc 评论 勾股定理结合分类讨论思想 学生要注意这类试题的多解性 4 Rt 一直角边的长为 11 另两边为自然数 则 Rt 的周长为 A 121 B 120 C 132 D 不能确定 解 设该 Rt 的三边分别为 a b c a b 为直角边 c 为斜边 由勾股定理知 即 11 2 b2 c2 22 所以 b c c b 121 因为 b c 都为自然数 所以 b c c b 都为正自然数 又因为 121 只有 1 11 121 这三个正整数因式 所以 b c 121 c b 1 所以 b 60 c 61 评论 本题以直角三角形为载体 同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力 二 直角三角形的判定 5 在 ABC 中中 a b c 为 A B C 的对边 给出如下的命题 若 A B C 1 2 3 则 ABC 为直角三角形 若 A C 一 B 则 ABC 为直角三角形 若 则 ABC 为直角三角形 若 a b c 5 3 4 则 ABC 为直角三角形 若 a c 45ca b a c b 2 则 ABC 为直角三角形 若 a c 2 2ac b 2 则 ABC 为直角三角形 若 12 9 B 15 则 ABC 为直角三角形 上面的命题中正确的有 A 6 B 7 C 8 D 9 解 对 因为三角形内角和为 180 度 所以 A B C 180 因为 A B C 1 2 3 所以 C 180 所以 C 90 则 ABC 为直角三角形 正确 对 因为 A B C 180 而 A C 一 B 所以 C 一21 B B C 180 所以 C 90 即 ABC 为直角三角形 正确 对 设 a 5k 因为 则45ca 3b c 4k C2 b2 a2 所以为 ABC 直角三角形 正确 同理易知 正确 对 因为 a c a c b 2 所以 a2 c2 b2 所以 ABC 为直角三角形 正确 对 因为 a c 2 2ac b 2 所以 a2 c2 2ac 2ac b 2 所以 a2 c2 b2 正确 对 因为 12 9 15 所以 AB2 AC2 BC2所以正确 答案选 B 评论 直角三角形的评定可以从角和边两方面来进行 从角来判定需结合三角形内角和定理 从边来判定需结合勾股定 理 一般是验证最大边的平方是否等于两小边的平方和 三 翻折 6 矩形纸片 ABCD 中 AD 4 cm AB 10cm 按如图 18 1 方式折叠 使点 B 与点 D 重合 折痕为 EF 则 DE cm 解 设 DE 为 x 因为 DE 是由 BE 翻折过来的 所以 DE BE x 则 AE 10 x 在 Rt ABD 中 AD2 AE2 DE2 所以 4 2 10 x 2 x 2 解得 x 5 8 cm 评论 翻折和旋转是初中数学常见的题型 解答这类题的关键在于把握翻折和旋转前后的联系 主要是看清哪些量没变 抓住这些不变的量 以此为突破口便可以顺利解决 本题的不变量是 DE 和 BE 的长度 抓住这个关系 再通过勾股定理 建立等式 在直角三角形中便可解出边长的长度 四 爬行 7 如图 有一个圆柱 它的高等于 16cm 底面半径等于 4cm 在 圆柱下底面的 点有一只蚂蚁 它想吃到上底面上与 点相对的AAB 点处的食物 需要爬行的最短路程是 cm 取 3 解 蚂蚁要沿圆柱体侧面爬 将圆柱体的侧面沿蚂蚁所在的垂直于底面的直线切开 展开后是一个长为 8 宽为 16 的 长方形 蚂蚁所在的是一个顶点 而相对的点则是对面那条长为 8 的边的中点 所以根据勾股定理 两点之间的距离 为 d d2 8 2 16 2从而解出 d 评论 爬行问题是勾股定理的一大重要应用 关键在于将立体图形转化为平面图形 从而简单便捷地找出最短距离 然 后再利用勾股定理求出边长 8 已知长方体的长为 2cm 宽为 1cm 高为 4cm 一只蚂蚁如果沿长方体的表面从 A 点爬到 B 点 那么沿哪条路最近 最短的路程是多少 解 将长方体的侧面 B B C C 展开到与长方体的正面 AC C A 在同一平面内 得到长方形 AB B A 长 AB 3 cm 宽 A A 4 蚂蚁沿长方体的表面从 A 点爬到 B 点最短距离即为长方形 AB B A 的对角线 A B 长 由勾股定理易知 A B 5 五 图形变换 9 如图 2 1 是小红用硬纸板做成的两个全等的直角三角形 两直角边的长分别为 a 和 b 斜边长为 c 如图 2 2 是以 c 为直角边的等腰直角三角形 她想将它们拼成一个能证明勾股定理的图形 可以吗 1 如果能 请你画出拼成的这个图形的示意图 写出它是什么图形 2 用这个图形证明勾股定理 3 假设图 2 1 中的图有若干个 你能运用 1 中所示的直角三角形拼出另一个能证明勾股定理的图形吗 请画出 拼后的示意图 无需证明 23 1 如图是直角梯形 2 因为 S 梯形 a b a b a b 2 S 2 ab c2 ab c2 所以 a b 2 ab c2 即 a2 b2 c 2 3 如图121111 所示 评论 这是一道图形换的题 具体涉及到图形的拼凑 解决勾股定理这方面的试题关键是要对课本勾股定理证明涉及到 的几种常见的图形以及证明过程和原理要熟练掌握 再利用适当的迁移便可以解答了 六 实际应用 10 某校把一块形状为直角三角形的废地开辟为生物园 如图 5 所示 ACB 90 AC 80 米 BC 60 米 若线段 CD 是一条小渠 且 D 点在边 AB 上 已知水渠的造价为 10 元 米 问 D 点在距 A 点多远处时 水渠的造价最低 最低造价 是多少 解 当 CD 为斜边上的高时 CD 最短 从而水渠造价最低 因为 CD AB AC BC 所以 CD ACB 48 米 所以 AD 22804AC 64 米 所以 D 点在距 A 点 64 米的地方 水渠的造价最低 其最低造价为 480 元 cc b ab 11 有一只小鸟在一棵高 4m 的小树梢上捉虫子 它的伙伴在离该树 12m 高 20m 的一棵大树的树梢上发出友好的叫声 它立刻以 4m s 的速度飞向大树树梢 那么这只小鸟至少几秒才可能到达大树和伙伴在一起 解 如图所示 根据题意 得 AC 20 4 16 BC 12 根据勾股定理 得 AB 20 则小鸟所用的时间是 20 4 5 s 评论 解答勾股定理的实际应用题 首先要审清题意 然后找出试题情景中涉及到的直角三角形 再结合勾股定理便可 以求出了 在该题中 我们关键是要根据题意画出勾股定理涉及到的直角三角形图形 只需求得 AB 的长 根据已知条 件 得 BC 12 AC 20 4 16 再根据勾股定理就可求解 补充
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!