盾构施工方案.doc

上传人:jian****018 文档编号:8896733 上传时间:2020-04-01 格式:DOC 页数:73 大小:4.81MB
返回 下载 相关 举报
盾构施工方案.doc_第1页
第1页 / 共73页
盾构施工方案.doc_第2页
第2页 / 共73页
盾构施工方案.doc_第3页
第3页 / 共73页
点击查看更多>>
资源描述
目 录第一章 工程概况11.1 工程概况11.1.1 工程简介11.1.2、工程地质水文情况21.1.3、地表及地下建(构)筑物31.1.4气候状况51.2 工程重点、难点对策51.2.1 工程重点51.2.2 工程难点及对策61、盾构机在多种地层中掘进控制62、下穿京山铁路、广渠门立交桥、东护城河、人行天桥主要应对措施73、穿越管线施工方案10第二章 盾构施工总体策划及工程管理112.1 总体施工方案112.2 盾构总体施工流程122.3 施工进度计划安排132.4 项目部的管理架构13第三章 劳动力计划及施工设备配置143.1 劳动力计划143.2 机械设备配置表15第四章 施工总平面布置及临时工程164.1 施工平面布置164.2 施工用电设计144.3 隧道通风、循环水、照明174.4 通讯19第五章 前期技术措施205.1 洞门施工205.1.1 洞口加固土体检测205.1.2 洞门破除施工205.2 盾构机设备的组装与调试215.2.1 盾构机组装场地的布置及吊装设备215.2.2 盾构组装技术措施215.2.3 盾构机调试225.2.4 组装安全保护措施23第六章 盾构掘进施工方案246.1 盾构机始发与试验段掘进246.1.1 盾构始发的工艺流程246.1.2 始发阶段的掘进、出碴及运输246.1.3 始发掘进技术要点256.1.4 试验段掘进参数的选择分析256.2 正常掘进与主要施工工艺266.2.1 掘进模式的选择266.2.2 碴土改良和管理296.2.3 掘进过程中姿态控制306.2.4 管片拼装316.2.5 盾构同步注浆336.2.6 二次注浆376.2.7 隧道测量386.2.8 隧道防水施工措施436.2.9 隧道防腐蚀施工措施456.2.10 地层与建筑物隆陷控制及监测反馈456.2.11 洞内出碴、运输及弃土外运476.3 盾构机到达496.3.1 盾构到达施工流程496.3.2 盾构到达的准备工作496.3.3 盾构到达施工506.3.4 盾构到达施工注意事项516.4 对盾构掘进过程中突发险情的预案516.4.1 盾构隧道过建(构)筑物时的应急预案516.4.3 应急预案526.4.4 风险上报流程536.4.4 应急事故处理程序546.4.4 应急物资56第七章 施工测量577.1 编制依据577.2 测量准备577.3 控制测量577.4 施工测量58 7.5 联系测量587.6 洞内施工测量597.7 工程自动测量系统607.8 贯通误差测量607.9 人员组织及设备配置607.10 质量控制61第八章 工程质量保证措施628.1 盾构掘进施工质量保证措施628.2 施工测量与监测的质量保证措施63第九章 安全生产保证措施659.1 安全生产管理目标659.2 安全保证体系659.3 盾构隧道施工安全保证措施66第十章 文明施工保证措施6710.1 文明施工管理组织机构6710.2 文明施工管理措施67第十一章 环境保护措施6911.1 加强施工管理,强化环境保护意识6911.2 加强废水、废气、废渣的管理6911.3 加强运输车辆的管理6911.4 加强监测量测,确保环境安全70第一章 工程概况1.1 工程概况1.1.1 工程简介广渠门内站广渠门外站区间:本区间采用盾构法进行施工(部分采用矿山法法施工),沿广渠门内大街及广渠门外大街行进,呈东西走向。区间总长1087双线米(其中左线1032.657m,右线1035.996m,总长2068.653m为盾构隧道)。盾构隧道外径为6000mm,内径为5400mm,管片厚度300mm,衬砌管片每环分为6块:3块标准管片(A型),2块邻接管片(B1、B2型),1块封顶管片(C型),每环宽度为1200mm,环与环之间设16个纵向连接螺栓,沿圆周均匀布置,一环中相邻管片间环向连接设2个螺栓,每环设12个环向螺栓,环、纵向螺栓均采用M24弯螺栓,衬砌采用错缝拼装。本区间线路主要沿现状道路布置,呈东西走向,起点为广渠门内站,线路出站后沿广渠门内大街路中向东延伸,先后穿越本家润园人行天桥、京山线广渠门铁路框架桥、广渠门立交桥、东护城河,旁穿领行国际地下车库及忠实里2栋16层楼,进入广渠门外大街,在广渠门外大街与广和里路交汇处设置广渠门外站。广渠门内大街道路两侧已建成高密度住宅区,北侧有本家润园、丽水湾畔、白桥北里、白桥南里,广渠春晓,忠实南里,南侧有安化北里,领行国际,在建冠成名敦道。京山铁路桥广渠门立交桥和东护城河右线1035.966米左线1032.657米广渠门内站广渠门外站1.1.2工程地质水文情况本段沿线位于北京城区东部平原地区,属于永定河冲洪积扇的轴部,受古金沟河故道控制。所处地貌类型主要为古金沟河故道以及河道两侧台地。本段地势总体为西高东低,里程K9+300.0K16+230.0,钻孔孔口标高为40.1033.82m,由西向东逐渐降低;拟建线路主要位于广渠门内大街上,现状主要为道路及隔离带。线路两侧主要为多层或高层建筑物;沿线路地上分布有铁路框架桥、人行天桥及护城河,线路地下分布有较多上水、污水及雨水、热力、通信及燃气管线。根据本地区规范规定,北京平原地区地基土的标准冻结深度为0.80m。本次勘察钻孔最大深度70m,在勘察深度范围内,根据区域水文地质资料,本段线路赋存三层地下水,地下水类型分别为潜水(二)、承压水(三)和承压水(四)。本次勘察未见上层滞水,但由于大气降水、管道渗漏等原因,沿线不排除局部存在上层滞水的可能性。地下水详细情况见下表2.1-1所示。表2.1-1 地下水特征表地下水性质水位/水头埋深(m)水位/水头标高(m)观测时间含水层及其特征含水层渗透系数(m/d)潜水(二)7.6615.9316.6329.892009.4粉细砂3层、中粗砂4层2040承压水(三)15.526.1412.0420.302009.4中粗砂1层、粉细砂2层、圆砾卵石层20100承压水(四)36.537.1-2.15-2.262009.3粉细砂2层2040潜水水位线694m339m承压水水位线本段区间隧道覆土1019m,隧道洞身主要穿过的土层有中粗砂4层、圆砾卵石层、粉质粘土层、粉土2层、细中砂3层。潜水(二)水位标高2529.89m,位于粉细砂3层、中粗砂4层。最大坡度为12%。1.1.3地表及地下建(构)筑物本标段线路影响范围内主要下穿建(构)筑物、管线路情况如表所示。线路影响范围主要建(构)筑物、管线路情况汇总表建(构)筑物名称里程与隧道结构相对关系铁路箱涵桥右K11+019037京山线广渠门铁路框架桥位于东二环广渠门立交桥和白桥大街之间,该桥由并列三座框架桥组成,从北到南依次为号为单孔框架桥孔径为12m;号为双孔框架桥孔径为215m;号为单孔框架桥孔径为12m。中间两跨和两边跨设有20cm宽沉降缝。区间隧道在右K11+019037从号为双孔框架下穿过(框架桥结构底板厚0.95m,顶板厚0.85m,边墙及中墙厚0.9m,净高为5.7m),隧道结构与框架桥底板底净距为13.528m。广渠门立交桥右K11+250480广渠门立交桥在广渠路与南二环路相交处,广渠路在上,二环路在下,立交桥由主桥(包括快、慢车桥南北各两座),匝道跨河桥(南北两座)等六座桥组成。快车桥在上,慢车桥在下,均同时跨越最底部的二环路和护城河,组成了一个三层式立交桥。慢车桥位六跨孔径为18.5m的简支梁桥,每座桥长111m,快车桥全长214.2m,分为两个部分:中间部分为五孔跨径18.5m的斜交简支梁结构,两端部分为东西转盘。桥梁下部结构为T型墩身,厚0.7m,宽33.5m,基桩为钻孔灌注桩,桩径1m,入土深度1724m。慢车桥南北两侧设置人行梯道,南扶梯和慢车桥交角94.803,北扶梯和慢车桥交角92.507基础均为扩大基础,基础底面采用三七灰土换填。隧道与桥桩最近为11.24m,穿越人行梯道楼梯基础最小覆土12.9m。广渠门立交桥四周挡墙挡墙基础均为扩大基础,隧道与四周挡墙基础最小覆土12.9m左右。盾构隧道下穿东护城河右K11+300365东护城河已基本按规划实现,规划河道平面位置、断面形式及尺寸与现状一致。规划河道横断面采用梯形复式断面,规划河底宽为35m,河道上口宽65m,规划河底高程为31.96m,两侧二层台高位35.41m,二层台以下为约3m高直墙,直墙内有约0.7m宽平台,平台内位边坡1:4的斜坡至河底。 隧道在右K11+300365段穿越东护城河,结构外轮廓与河底最小净距离为10.14m。本家润园人行天桥右K10+842天桥主桥跨径12.75m+19.5m+17.5m+12.75m,为全焊等截面钢箱梁,宽度3.3m,全长65m,桥下净空不小于4.5m。天桥两侧人行梯道(1:4)宽4m。天桥下部基础除梯脚处采用半埋式钢筋混凝土扩大基础外其余均采用钻孔灌注桩基础、墩柱、盖梁,主桥桩径D=1.2m,长1828m,梯道桩径D=1.0m,墩柱及盖梁均为钢结构,墩底插入杯口承台基础。主梁及梯道下部各墩柱均垫有橡胶支座及滑动拉压支座。右线隧道离桥桩水平净距离为5.92m,垂直距离2.54m领行国际21层楼地下三层车库右K11+226238领行国际公寓楼建于2006年,地上21层,地下3层,基础埋深14.85m(东侧),主体结构为框支剪力墙结构。隧道结构外轮廓与地下车库底最小净距离为16.09m,与地下二层至三层的坡道净距离8.16m。垂直距离3.95m忠实南里小区2栋永16居民楼左K11+517547左线隧道离楼房最近处约为10.49m,基础资料没有收集到忠实南里小区永5居民楼左K11+573左线隧道离居民楼最近处约为14.25m,基础资料没有收集到广渠门桥西北侧永2、永4房屋右K11+175210左线隧道离房屋最近处约为8.87m,基础资料没有收集到垂直下穿20002000电力管沟右K11+420电力管沟沟内底标高33.1234.82m,管沟结构厚度不详, 管内底距区间结构顶约9.7m。20002300电力管沟右K11+560电力管沟沟内底标高30.6234.13m,管沟结构厚度不详,管内底距区间结构顶约5.31m 平行及斜向穿越40002800热力管沟右K10+648右K11+260热力管沟位于右线隧道上方,结构平行及斜向穿越,沟内底最低点标高27.74m,管沟结构厚度不详,沟内底距区间结构顶约7.33m平行及斜向穿越44002100热力管沟右K11+270726热力管沟位于右线隧道上方,结构平行及斜向穿越,沟内底最低点标高32.93m,管沟结构厚度不详, 沟内底距区间结构顶约8.22m平行及斜向穿越36001800(局部5000300)热力沟右K11+270485热力管沟位于右线隧道上方,结构平行及斜向穿越,沟内底最低点标高27.69m,管沟结构厚度不详,沟内底距区间结构顶约6.32m平行及斜向穿越2000(局部1950及1750)污水管左K10+648左K11+280污水管位于左线隧道上方,最低管内底标高为31.4m。管子结构厚度不详,材质不详,管内底距区间结构顶约9.9m垂直下穿2000污水管右K11+440最低管内底标高为31.2m。管子结构厚度不详,材质不详,沟内底距区间结构顶约7.52m下穿34001750(局部40001500)雨水管沟左K10+648左K10+920污水管位于隧道上方,与左线隧道平行,垂直于右线隧道,最低管内底标高为33.1m。管沟结构厚度不详,材质不详,管内底距区间结构顶约9.9m下穿1100雨水管右K11+656726污水管位于隧道上方,与右线隧道平行,垂直于左线隧道,最低管内底标高为35.4m。管子结构厚度不详,材质不详,管内底距区间结构顶约8.26m平行及斜向下穿1400(局部1000)雨水管右K10+960右K11+300污水管位于隧道上方,与隧道平行,局部垂直,最低管内底标高为34.4m。管子结构厚度不详,材质不详,管内底距区间结构顶约14.26m1.1.4气候状况本标段场区位于北京市,所处区域属中纬度暖温大陆性季风气候。多年平均降雨量为544600mm。多年平均水面蒸发量为1100mm左右。多年平均气温12。多年平均日照总数为2730h左右。全年无霜期为215天。多年平均风速2.2m/s,盛行西北风和东南风。1.2 工程重点、难点对策1.2.1 工程重点1、地表沉降控制因此本区间最大的难点就是在盾构掘进过程中对地面沉降的控制。须保证地面沉降严格控制在允许范围之内。为确保万无一失,需严格管理,采取有效的技术措施。而盾构掘进过程中控制地面沉降的技术关键是保持盾构开挖面的稳定和及时充填隧道与地层之间的建筑空隙,并且在掘进过程中随时优化掘进参数。具体措施如下:(1)在盾构掘进通过之前,对受影响的基础、建(构)筑物和地下管线进行预评估,根据实际情况,组织论证,制定预案。(2)在盾构掘进施工过程中,保证盾构开挖面的稳定。通过优化掘进各种掘进参数:刀盘和土舱压力与时间、注浆方式、浆液性能、盾构坡度、盾构姿态和管片拼装偏差等。熟练掌握盾构机的操作,根据地面变形曲线进行实测反馈,以验证选择施工的合理性,并且不断地进行施工参数的优化调整。(3)在盾构掘进过程中,要尽快在脱出盾构后的衬砌背后环行建筑空隙内充填足量的浆液材料。根据不同地质条件,确定不同的浆液配比、注浆压力、注浆量及注浆时间等。(4)根据建(构)筑物的结构类型及对沉降的敏感程度、沉降的允许值,制定重要建(构)筑物及地面变形警戒值。建立完善的监测网,及时反馈信息,在盾构同步注浆之后,及时进行跟踪补浆或二次注浆。(5)贯彻信息化动态施工,加强地表沉降及建筑物变形监测,监测数据经过分析后反馈于盾构掘进施工,及时根据分析后的结果优化和调整盾构施工参数,确保盾构安全平稳掘进。(6)加强机械检修养护,在建筑物下进行连续快速地掘进。(7)防止螺旋输送机涌砂,防止盾尾和铰接部位漏泥等地层过度损失造成沉降或沉降加大。(8)控制好盾构姿态,避免盾构大幅度纠偏、上浮或叩头、后退现象的发生。(9)针对高架桥及机场高速匝道,在盾构推进施工方面采取严密的控制措施(如出土控制、同步注浆、盾构姿态控制等)外,还需制定专门的监测方案和应急预案(主要是实行巡视制度、预先做好跟踪注浆等的准备工作、跟踪做好交通疏解)。2、合理安排施工顺序,保工期重协调(1)对于可能影响盾构正常掘进的建(构)筑物、端头加固、盾构始发准备等需要与相关单位密切协调,争取提前安排、提前完成,保证工期。(2)做好工序的衔接,在地层不断转换过程中,要勤检查刀具的磨损情况,根据前方地质情况,选择合适地点,采取有效措施,对刀具进行更换,避免盾构机非正常停机。(3)保证盾构机及后配套的完好率和利用率,保证盾构机的有效掘进时间。(4)做好各种协调,减少施工干扰,确保施工顺利。在施工过程,密切与相关单位保持密切接触,随时掌握其进度,确保按时移交施工场地。3、防水施工防水施工是一个复杂的系统工程,防水的效果,是地铁工程施工质量的综合体现,直接影响着工程的耐久性和地铁运行安全,是施工控制的重点。主要对策如下:(1)做好防水材料、施工技术、质量要求、注意事项的交底,使施工人员人人心中有数,避免盲目施工。(2)对每道工序按照工艺细则进行精心操作,严格检查,凡检查验收不合格者,坚决纠正,绝对不迁就。上道工序纠正不合格不准进入下道工序,防水质量对施工进度一票否决。(3)止水条粘贴时,保证基面无尘、无污染、干燥,以保证粘贴质量。管片吊运、拼装时注意保护管片表面免受碰撞,确保止水条状态完好。(4)施工中严格控制盾构机推进姿态,减小分组油缸推力差,避免管片的错台和止水条脱落失效。(5)盾构推进过程中保证同步注浆的质量,选择合适的浆液、注浆参数、注浆工艺,足量注浆,形成稳定的管片外围防水层。视需要及时进行二次注浆。1.2.2 工程难点及对策1、盾构机在多种地层及承压水水位较高的地层中掘进控制盾构开挖面主要为粉土、粘性土及碎石土。粉土及粘性土层与碎石土层之间物理力学性质差异较大,在施工时可能会引起上下两层排土不均匀,从而引起地层下沉,并造成盾构在线路上的偏离。(1)调整盾构掘进推力、掘进速度等相关施工参数,既保持较高的刀盘转速和施工效率,又使刀具的磨损控制在合理的范围之内。(2)严格控制盾构机的姿态,保证掘进面与刀盘面的平行。发现掘进方向偏差超过允许值时,采用小角度渐近纠偏,加强对管片拼装质量的要求,保持好管片与盾尾之间的间隙。(3)向开挖面注入泡沫或膨润土浆液,润滑和冷却刀具,改善碴土的可排性,提高掘进效率。(4)掘进过程中,有针对性的加注泡沫剂以减少刀盘扭矩,消除盾构旋转的外力因素,从而防止盾构过度旋转。(5)对管片防水材料进行全面的检验,防水材料眼要个按照规范粘贴。(6)采用质量好的盾尾油脂,减小管片拼装连接的透水性。(7)在拼装过程中及掘进过程中对螺栓进行复紧。(8)备好海绵条、棉纱在盾尾漏水漏沙的过程中进行封堵。2、下穿京山铁路桥、广渠门立交桥、东护城河、人行天桥主要应对措施京山铁路桥与隧道位置关系(1)京山线广渠门铁路框架桥位于北京二环广渠门立交桥和白桥大街之间,该桥由并列三座框架桥组成,从北到南依次为号位单孔框架桥孔径为12米,号为双孔框架桥孔径为2*15米,号为单孔框架桥孔径为12米,中间两跨和边跨设有20cm宽沉降缝。盾构隧道顶与铁路桥垂直距离为12.512m。 广渠门立交桥铁路桥墩、承台与隧道间位置关系(2)广渠门立交桥在广渠路与南二环路相交处,广渠路在上,二环路在下,立交桥由主桥(包括快、慢车桥南北各两座),匝道跨河桥(南北两座)等六座桥组成。快车桥在上,慢车桥在下,均同时跨越最底部的二环路和护城河,组成了一个三层式立交桥。慢车桥位六跨孔径为18.5m的简支梁桥,每座桥长111m,快车桥全长214.2m,分为两个部分:中间部分为五孔跨径18.5m的斜交简支梁结构,两端部分为东西转盘。桥梁下部结构为T型墩身,厚0.7m,宽33.5m,基桩为钻孔灌注桩,桩径1m,入土深度1724m。慢车桥南北两侧设置人行梯道,南扶梯和慢车桥交角94.803,北扶梯和慢车桥交角92.507基础均为扩大基础,基础底面采用三七灰土换填。隧道与桥桩最近为11.24m,穿越人行梯道楼梯基础最小覆土12.9m。(3)河道断面采用梯形复式断面,规划河底上口宽65米,河底高程31.96米,两侧二层台高为35.41米,二层台以下约为3米高墙,直墙内约有0.7米宽平台,平台内边坡1:4的斜坡至河底,隧道在右K11+300365段穿越东护城河,结构外轮廓与河底最小净距为10.14米。(4)区间在右K10+842处穿越本家润园人行天桥,线路从南北主桥桩中间穿越。 天桥主桥采用钻孔灌注桩基础,桩径D=1.2m,长1828m。 右线隧道离桥桩水平净距离为5.92m。洞身范围地层为中粗砂、粉土及粉质粘土。5.92mm6.54mm 应对措施:(1)加强施工中人员配置,征调经验丰富的施工队伍。(2)密切监测重点建构筑物的监测点;在盾构穿越前,设定一模拟施工段(施工前50米作为试验段模拟施工参数),确定盾构施工参数和掌握规律;严格控制盾构的超挖和欠挖,防止盾构前方土体的坍落或挤密现象,从而减小地基土横向变形;加强局部注浆管理,减少盾构通过后隧道外的建筑空隙;盾构机穿越后,根据实际测量的变形情况,及时对周围土体进行二次双液注浆加固。(3)在下穿前仔细检查盾构机各构件的密封状况,以提高过桥安全性。保证配件供应和盾构机各系统始终处于正常工作状态,提高掘进速度,避免盾构机在河底作不必要的停留。并且及时调整盾构机施工参数,保持土压压力稳定,其波动值控制在10%以内,出土量控制在2%的误差范围以内,保证对土体的扰动降到最低。(4)必要时组建盾构专家,根据实际情况制定相应的施工方案及应急预案。(5)施工过程中加强对建/构筑物的监测,经过高危地段时加密监测频率,做好监测数据统计与分析,及时反馈结果,指导现场施工。(6)分类制定详细的、切实可行的应急预案,并经常组织演练。根据监测结果,必要时实施应急预案,以避免对建/构筑物造成较大的影响和损坏。(7)做好机械设备维修保养工作,加强施工组织管理,确保快速安全通过。(8)确保合理的同步注浆量并及时进行二次注浆,并在盾构穿过后对建筑物长期监测和跟踪注浆;(9)对铁路提前加固区间范围内重要管线提前进行防渗处理及预加固,减小地面的沉降变形。根据建筑物(构筑物)与线路的关系,对建筑物基础进行局部或全部进行注浆加固,提高建筑物地基的承载力和整体性,避免因施工引起基础不均匀沉降。可从地面向基础下方布置袖阀注浆管,使注浆管前端位于受影响的基础下方,根据量测反馈资料进行跟踪注浆。注浆可采用水泥水玻璃双液,以便能调节浆液凝固时间。注浆过程中应注意控制注浆压力,防止注浆压力过大,造成对基础的破坏。袖阀管注浆加固见下图3、穿越管线路施工方案线路地下分布有较多上水、污水及雨水、热力、通信及燃气管线。(1)以最佳施工参数通过,严格控制地层损失率2;(2)调整好盾构姿态,匀速、连续地推进,减小变速推进对周围土体的扰动;(3)加强同步注浆,及时填充隧道衬砌壁后空隙;(4)严格控制管片拼装精度,确保防水材料处于最佳工作状态,防止管片渗漏水造成上方土体的沉降;(5)加强监测,做到“勤量测、速反馈”,若监测数据表明管线沉降量达到预警值,进行二次注浆,并按多点、均匀、少量、多次的原则有序进行,直至土体变形稳定。第二章 盾构施工总体策划及工程管理2.1 总体施工方案本区间施工顺序盾构施工阶段碴土、管片、施工材料的运输方式,在地面为汽车运输,隧道内为电瓶车牵引平板车实行单轨运输,地面与隧道之间的垂直运输采用45t龙门吊来完成。隧道内碴土、管片、施工材料采用45t电瓶车运输。装运碴土的土斗容量为17m3,浆液车容量为7m3。隧道洞内采用43kg钢轨铺设单线运输轨道,钢轨中心距为970mm,钢轨枕采用18#工字钢加工,间距为1.2米,用压板螺栓固定钢轨,轨枕间用钢筋拉牢。施工现场供配电系统分为两个独立的部分,一部分为10KV高压供电系统,现场专用高压开关柜,由竖井接入盾构机高压电缆卷盘,经盾构机自带容量为1600KVA的10KV-0.4KV变压器变压后,通过盾构机内部配电系统分配给各用电设备使用;另一部分为220/380V供电系统,由施工现场容量为500KVA的10KV-0.4KV变压器变压后,经现场三级配电系统送至除盾构设备以外的其他电气设备使用。区间隧道内用1000的送风管送风,风机采用2SZ-100A型风机。施工现场地面通过高架碘钨灯进行照明,其功率为2kw。隧道内照明采用防水荧光灯,每10m布置一盏。照明电压均为220v。通过4吋钢管与甲方提供的水源相接,然后分两路向生产、消防系统供水。盾构场地四周设400400mm排水沟,雨水及基坑抽水流入排水沟,经沉淀池沉淀后排入市政管道。根据盾构施工特点,将盾构掘进划分为三个阶段,即初始掘进段、常规掘进段和到达掘进段。将盾构初始掘进的100m作为始发试掘进段,到达接收井前50m段作为接收段,其余地段作为常规掘进段。整个施工过程中始终坚持以施工监测、信息反馈指导施工的方针,以地表沉陷监测、建筑物等加强对地层变形的分析、预测、反馈指导施工。施工前期各项准备盾构机进场始发基座就位盾构机下井组装安装反力架主体与后配套台车管线连接盾构机调试洞门凿除安装止水帘布盾构始发阶段施工拆除负环、基座和反力架盾构机正常掘进盾构机到达接收井站盾构机接收解体隧道清理、嵌缝施工竣工验收2.2 盾构总体施工流程2.3 施工进度计划安排 2.4 项目部的管理架构针对本工程的工程规模、场地条件及工程特点,结合我司多年来在各类地下工程管理中积累的经验,为确保高效、优质、安全、文明、低耗完成本工程,组建盾构施工工程项目经理部,组织管理机构详见【图2.4-1项目部组织管理机构图】。图2.4-1 项目部组织管理机构图第三章 劳动力计划及施工设备配置3.1 劳动力计划在盾构隧道内结合本工程专业特点和现代科学管理理论,充分发挥和调动每个人的劳动积极性,精心筹划,科学安排,进行动态管理,弹性编组,灵活组织,实施平行、流水、交叉作业。推进施工班组人员:每班施工中设施工班长1名。施工人员包括推进、拼装注浆系统、机电班两班轮转。全天候值勤检查,保障盾构设备的正常运转,做到均衡施工。具体施工组人员安排如下表:单线盾构推进施工人员(单台单班)序号岗 位人数序号岗 位人 数1施工班长17电机车司机22盾构司机18行车司机13管片拼装19井底、井口吊运44管片拼装辅工310同步注浆25电焊工111浆液搅拌站46库管员112壮工6小计27人机电维修人员(单班)序号岗 位人 数序号岗 位人 数1机 修 工32电 工2小计5人另计项目部管理人员33合计33+272+52=97人3.2 机械设备配置表设备名称规 格数量单位用途盾构土压平衡盾构2台隧道施工同步注浆系统2套同步注浆浆液搅拌站1台制备同步注浆浆液膨润土搅拌系统1套膨润土搅拌发酵双液注浆系统1套用于隧道内二次补浆电机车45t2台井下水平运输电瓶3组井下水平运输充电机6台电瓶充电土斗车6辆土方水平运输管片车4辆管片水平运输浆液罐车7立方米2辆浆液水平运输龙门吊45t1台地面及井下垂直运输龙门吊15t1台辅助材料垂直运输电焊机2台焊接排污泵8/6AH-WARMAN PUMP2台隧道内排污挖掘机1m31台渣土坑挖土轴流风机2台隧道通风风管1000mm1900m隧道通风电话机自动10台施工通讯用测量仪器自动导向系统1台隧道测量测量仪器徕卡NA2+GPM3(水准仪)1台隧道测量测量仪器徕卡TCRA1202(全站仪)1台隧道测量第四章 施工总平面布置及临时工程4.1 施工平面布置遵照招标文件划定的施工用地范围和北京市地铁公司文明施工管理有关规定及临时设施修建标准,消防、防雷、安全、卫生等有关规定,对施工场地进行合理的平面布置。4.2 施工用电设计根据本工程施工实际需要和施工进度计划安排,在盾构掘进施工期间,我项目投入的用电机械设备如下【表4-1 用电设备汇总表】。表4-1 用电设备汇总表序号设备名称及数量用电功率序号设备名称及数量用电功率1土压盾构机1台1600kW15电瓶车充电360kW245T龙门吊200kW16地面照明及生活用电30kW3浆液搅拌站44kW17隧道照明40kW4风机60kW28其他设备20kW合计2188KW,除盾构机外为588KW根据上表统计数据,同时考虑施工现场的动力、生活用电和照明用电可按照公式估算:P1cosP(KVA)=K( K1 + P1 K2) 式中:S工地总用电量(kVA)K备用系数,一般取K=1.051.1,根据实际情况取K=1.05P1全工地动设备的定额输出功率总和(kW)P2全工地生活用电和照明用电的电量总和(kW)动力设备的效率,一般取=0.850.9cos功率因数,根据实际情况取0.80K1全部动力同时使用系数,一般设备数量在五台以下取K1=0.6,五台以上取K1=0.40.5,根据实际情况(以盾构机为主)取K1=0.8K2生活用电及照明用电设备的同时使用系数,一般取K2=0.60.9,根据实际情况取K2=0.9计算: P1=684(kW)P2=30+40=70(kW)P1 6840.90.8cosP(KVA)=K( K1 + P1 K2)=1.05( 0.8 + 700.9) = 865(kVA)4.3 隧道通风、循环水、照明根据盾构施工的特点,在隧道内布置“四管、三线、一走道”,三管即100的冷却水供回管、100的排污管和1000的通风管。三线即10KV高压电缆、380/220V动力照明线和43Kg的运输轨线。详见【图4-2盾构隧道标准施工断面布置图】。1、隧道通风(1)隧道内通风环境要求根据盾构施工特点,在施工中采用压入式通风来解决防尘、降温及人员、设备所需要新鲜空气。(2)隧道通风设置1)隧道配备1台230KW轴流风机和直径1000mm拉链式软风管进行压入式通风,风机设在始发井隧道西端。图4-2 盾构隧道标准施工断面布置工作面需要的风量采用最小断面风速法进行计算:Q需=VminS=0.252860=420m3/min其中:最小断面风速取0.25ms,开挖断面面积约为28m2 。表4-2 隧道内通风环境要求序号项目要求1通风模式机械通风;2新鲜空气量每人每分钟供应3m3 ;3作业环境的卫生标准1、 隧道中氧气含量按体积不小于20%;2、 粉尘最高容许浓度,每立方米空气中粉尘(有10%以上的游离二氧化硅)2mg有害气体最高容许浓度a、一氧化硅最高容许浓度为30mg/m3;b、二氧化碳按体积不得大于0.5%;c、隧道内气温不得超过30;d、噪声不得大于90dB。通风机的风量考虑通风管的漏风,风机风量为:Q机=(Q需Q漏)=(420+4202.5%L/100)1.5=535.5m3/min其中:L为掘进长度,取1200m计算,每100m漏风率取2.5,为风机储备系数。2)风管直径1000,洞外采用铁皮风筒,入口段200米采用加强型软管,洞内采用软风管。3)风管采用储存筒盛装,一次装100米运入洞内,安装在后配套尾部,随盾构机的掘进延伸。4)风管用铁皮卡连接,暗挖隧道内采用门式支架架设,洞内借助管片连接螺栓吊挂风管,焊接吊环间距5米,其间用6mm盘条连接。2、隧道给排水(1)对反坡段排水及开挖面渗漏水,在开挖面附近设小积水坑,利用盾构机自身排水设备加装100mm钢管排水管接力直接抽至洞外沉淀池。(2)顺坡段设一挡水墙汇水,再用水泵抽至地面沉淀池。(3)为防止富水区突然涌水,以及反坡段的施工作业水、渗漏水危及设备,在盾构机下部一侧增设二台备用排水泵,当积水量超过盾构机自身排水能力时,启动该泵排水,出水管与原排水管连通。(4)为满足供水要求,在供水管中间增设管道增压泵。为满足隧道清理用水等,每隔60m在水管上安装水阀,并连接水管以备清洗管片和冲刷运输掉碴等。3、隧道照明(1)照明线路在隧道井口正一环处,设置一台双电源自动切换箱。从地面变电所接入分别来自二路不同受电系统,来保证隧道照明的不间断(电力电缆采用VV223252+2162接入)。(2)配线方式,采用BV3162+2102三相五线制(即L1-L1,N,PE)。(3)电箱配置,每百100米配置一台分段配电箱,供照明安装和动力用电使用。(4)灯具安装,每8环设置电支架1只和安装防水型40W荧光灯一只,配置10A插入式熔断器保护。4.4 通讯工地施工现场管理人员,均配备必要的通讯工具。现场办公室配备2条外线电话,作为工地与外界联系的纽带。另外,工地现场配备专用的程控交换机,作为井下和隧道内工作面与办公室之间及时进行联系的工具。第五章 前期技术措施5.1 洞门施工洞门的凿除必须在进洞土体加固完成后进行。先将洞门范围内维护桩凿除。5.1.1 洞口加固土体检测洞门破除用风镐人工破除。破除前先在洞门上部钻加固后的土体进行检测(土体加固提前完成)。方法是洞门处初衬喷射混凝土拆除前,在围护桩之间间开几个检查孔见【图5-1 洞门破除试探孔位示意图】,以确认加固土体的状况。图5-1 洞门破除试探孔位示意图5.1.2 洞门破除施工破除洞门时需要搭设脚手架,必须按照规范要求安装剪刀撑、扫地撑和斜撑,确保脚手架牢固可靠。破除前进行抽芯检测试验,对洞门渗水情况进行观察,抽芯采用米字型9个孔进行检测并符合验收标准。洞门破除顺序见【图5-2洞门破除顺序示意图】。图5-2 洞门破除顺序示意图5.2 盾构机设备的组装与调试5.2.1 盾构机组装场地的布置及吊装设备组装场地按照重载车辆道路标准进行平整及硬化,盾构设备运输到现场,盾构主机分为刀盘、前体、中体、盾尾等部分,后配套设备在各车架上固定好,车架共计7台,盾构主机的前体、中体、刀盘、螺旋机、盾尾、以及1号和2号台车由盾构吊装井按组装按顺序分别吊下,其余后配套设备放置在施工场地内。吊装设备为:1台300T汽车吊、230T汽车吊及相应的吊具,2套100T分离式液压千斤顶。盾构全部的结构件与液压组件和电器组件均在工厂按各吊装部件拼装好,井下依次连接。设备组装完毕后,接通液压管路、动力电缆、控制电缆,最后将水管、风管、气管连接好,一切准备就绪后,开机现场调试设备设计要求的各部件性能参数。5.2.2 盾构组装技术措施1、盾构机组装前必须制定详细的组装方案与计划,同时组织有经验的、经过技术培训的人员组成组装小组。2、盾构机组装前应对始发基座进行精确定位。3、大件组装时,对始发井端头墙进行严密观测,掌握其变形与受力状态。4、大件吊装时采用1台300T汽车吊机、1台230T汽车吊机。5.2.3 盾构机调试盾构机在井下组装完成后,组织机械、电气、液压及工程技术部人员组成盾构验收小组,并邀请业主、监理及盾构方面的专家以盾构各部件设备的机械性能技术指标为依据,进行盾构调试、验收确保盾构机械、电气等均处于良好工作状态,台车行走处于正常。1、空载调试盾构机组装和连接完毕后,即可进行空载调试,空载调试的目的主要是检查设备是否能正常运转。主要调试内容为:液压系统、润滑系统、冷却系统、配电系统、注浆系统,泡沫系统以及各种仪表的校正。2、负载调试空载调试证明盾构机具有工作能力后即可进行负载调试,负载调试是按正常掘进状态依次启动各系统,测试各系统的配合、连锁等情况进行总体调试。其目的主要是检查各种管线及密封的负载能力,对空载调试不能完成的工作作进一步完善,以使盾构机的各个工作系统和辅助系统达到满足正常生产要求的工作状态。通常试掘进时间即为对设备负载调试时间。负载调试时将采取严格的技术和管理措施,保证工程安全、工程质量和线形精度。开发场地的准备1号、2号后配套台车下井组装机组装就位安装始发基座盾构主机下井组装主机定位3-7号后配套台车与主机管线连接空载调试负载调试负环拼装安装反力架图5-3 盾构组装调试程序图5.2.4 组装安全保护措施1、盾构机市内运输委托给专业的大件运输公司。2、盾构机的吊装由具有资历的专业队伍负责起吊。3、组建组装作业班承担盾构机设备组装工作,指定生产副经理负责组织、协调盾构机组装工作。4、每班作业前按起重作业安全操作规程及盾构机制造商的组装技术要求进行班前交底,完全按有关规定执行。5、项目部相关人员负责大件运输和现场吊装、组装的秩序维护,确保安全。第六章 盾构掘进施工方案6.1 盾构机始发与试验段掘进6.1.1 盾构始发的工艺流程参见【图6.1-1盾构机始发工艺流程图】。洞门破除盾构机连接、空载调试始发掘进、负荷调试洞门密封后盾尾注浆回填盾构掘进及管片安装盾构机下井基座安装盾构机下井安装反力架安装负环管片图6.1-1盾构机始发工艺流程图6.1.2 始发阶段的掘进、出碴及运输根据施工场地和盾构始发井条件以及盾构机自身结构的特点,制定盾构始发掘进阶段的出碴、运输方案。1、始发、出碴及运输方案的确定根据始发场地,综合考虑各方因素,采用分体始发方案,即先将主机、后配套台车放置井下,然后将盾构机主机吊入井中进行组装,安装反力架,将主机与台车进行管线连接,调试、始发。2、盾构完成100m正线隧洞掘进后,拆除负环管片,同时铺设轨道,设置双开道岔;电瓶、碴土斗、管片及轨道、轨枕、走道支架、管线、油脂等材料等用45吨龙门吊盾构井在吊运。转入正常掘进阶段正常掘进阶段的出碴采用17m3土斗,垂直运输使用45门吊,井下水平运输采用二组45t电瓶车。6.1.3 始发掘进技术要点1、要严格控制始发基座、反力架和负环的安装定位精度,确保盾构始发姿态与设计线路基本重合。2、第一环负环管片定位时,管片的后端面应与线路中线垂直。负环管片轴线与线路的轴线重合,负环管片采用通缝拼装方式。3、盾构机轴线与隧道设计轴线基本保持平行,盾构中线比设计轴线适当抬高23cm。4、盾构在基座上向前推进时,各组推进油缸保持同步。5、初始掘进时,盾构机处于基座上。因此,需在基座及盾构机上焊接相对的防扭转支座,为盾构机初始掘进提供反扭矩。6、始发阶段,设备处于磨合期。盾构机在加固段推进时速度控制在35mm/min, 要注意推力控制在60010KN100010KN(速度控制推力,传感速度减小应增加推力、传感速度增大应减小推力),计算好刀盘进入洞口的尺寸在接触洞内岩土时转动刀盘,转速控制在0.81rp/min(根据刀盘扭矩调节刀盘转速),同时注意操作盘上的显示参数的变化,并及时作出调整也注意各部位油脂的有效使用。掘进总推力应控制在反力架承受能力以下,同时确保在此推力下刀具切入地层所产生的扭矩小于基座提供的反扭矩。7、盾构进入洞门前把盾壳上的焊接棱角打平,防止割坏洞门防水帘布。6.1.4 试验段掘进参数的选择分析1、盾构机初始掘进的100m作为试验掘进段,通过试掘进段拟达到以下目的:(1)用最短的时间对新盾构机进行调试、熟悉机械性能。(2)熟悉本工程的地质条件,掌握各地质条件下复合式盾构的施工方法。(3)收集、整理、分析及归纳总结各地层的掘进参数,制定正常掘进各地层操作规程,实现快速、连续、高效的正常掘进。(4)熟练管片拼装的操作工序,提高拼装质量,加快施工进度。(5)通过本段施工,加强对地面变形情况的监测分析,反映盾构机始发时以及试推进时对周围环境的影响,掌握盾构推进参数及同步注浆量。2、盾构机在完成前100m的掘进后,将负环管片、基座和反力架拆除。6.2 正常掘进与主要施工工艺6.2.1 掘进模式的选择土压平衡盾构机具有敞开式、半敞开式及土压平衡三种掘进模式。为了获得理想的掘进效果、保证开挖面稳定、有效控制地表沉降及确保地面建筑物安全,必须根据不同的地质条件选择不同的掘进工况。盾构区间隧道穿越的地层软硬不均、复合交互地质变化频繁,因此盾构机在全程推进过程中交叉使用土压平衡模式敞开式、半敞开式。通过试验段的掘进选定了六个施工管理指标来进行掘进控制管理:a、上部土仓压力0.08MP0.12MP;b、推进速度:2030mm/min;c、总推力10000KN15000KN;d、排土量50m352m3;e、刀盘转速:1.01.2rp/min;f、扭矩:1500KNm2500KNm;g、注浆压力:0.280.35MP;h、注浆量:6.67.3m3;其中土仓压力是主要的管理指标。1、土压平衡模式(1)土压平衡模式的实现土压平衡模式掘进时,是将刀具切削下来的土体充满土仓,由盾构机的推进、挤压而建立起压力,利用这种泥土压与作业面地层的土压与水压平衡。同时利用螺旋输送机进行与盾构推进量相应的排土作业,始终维持开挖土量与排土量的平衡,以保持开挖面土体的稳定。(2)土压平衡模式下土仓压力的控制方法土仓压力控制采取以下两种操作模式:1)通过螺旋输送机来控制排土量的模式:即通过土压传感器检测,改变螺旋输送机的转速控制排土量,以维持开挖面土压稳定的控制模式。此时盾构的推进速度人工事先给定。2)通过推进速度来控制进土量的模式:即通过土压传感器检测来控制盾构千斤顶的推进速度,以维持开挖面土压稳定的控制模式。此时螺旋输送机的转速人工事先给定。掘进过程中根据需要可以不断转化控制模式,以保证开挖面的稳定。(3)掘进中排土量的控制排土量的控制是盾构在土压平衡模式下工作的关键技术之一。根据对碴土的观察和监测的数据,要及时调整掘进参数,不能出现出碴量与理论值出入较大的情况,一旦出现,立即分析原因并采取措施。理论上螺旋输送机的排土量QS是由螺旋输送机的转速来决定的,掘进的速度和P值设定后,盾构机可自动设置理论转速N。QS 根据碴土车的体积刻度来确定。QS应与掘进速度决定的理论碴土量Q0相当,即:Q0=AVn0A-切削断面面积n0-松散系数V-推进速度通常理论排土率用K =QS/Q0表示。理论上K值应取1或接近1,这时碴土具有低的透水性且处于好的塑流状态。事实上,地层的土质不一定都具有这种性质,这时螺旋输送机的实际出土量与理论出土量不符,当碴土处于干硬状态时,因摩擦力大,碴土在螺旋输送机中输送遇到的阻力也大,同时容易造成固结堵塞现象,实际排土量将小于理论排土量,则必须依靠增大转速来增大实际排土量, 以使之接近Q0,这时Q0QS,K1。当碴土柔软而富有流动性时,在土仓内高压力作用下,碴土自身有一个向外流动的能力,从而碴土的实际排土量大于螺旋输送机转速决定的的理论排土量,这时Q0QS,K1。此时必须依靠降低螺旋输送机转速来降低实际出土量。当碴土的流动性非常好时,由于螺旋输送机对碴土的摩阻力减少,有时会产生碴土喷涌现象,这时转速很小就能满足出土要求。碴土的出土量必须与掘进的挖掘量相匹配,以获得稳定而合适的支撑压力值,使掘进机的工作处于最佳状态。当通过调节螺旋输送机转速仍达不到理想的出土状态时,可以通过改良碴土的可塑状态来调整。(4)土压平衡模式的技术措施1)进行开挖面稳定设计,控制土压力,采用土压平衡模式掘进,严格控制出土量,确保土仓压力以稳定开挖面来控制地表沉降。2)向土仓和刀盘面注入泥浆和泡沫,形成隔水泥膜,防止水从地层中渗出,提高土仓内碴土的稠度来改善碴土的止水性以及在螺旋输送机上安装保压泵碴装置,以使土仓内的压力稳定平衡。3)选择合理的掘进参数,确保快速通过,将施工对地层的影响减到最小。 4)定期使螺旋输送机正反转,保证螺旋输送机内畅通,不发生堵塞。5)适当缩短浆液胶凝时间,保证注浆质量。6)向土仓和刀盘注入泡沫和水改善土体的流动性,防止泥土在土仓内粘结。2、半敞开模式(1)半敞开模式适用的工况1)当洞身处于软硬不均地段。2)具有一定自稳能力和地下水的压力不太高的地层,其防止地下水渗入的效果取决于压缩空气的压力。(2)半敞开式模式的实现采用该模式的前提是对应的地层有相当的自稳能力,且其强度较大,其工作面的稳定依赖外界支撑的程度相对于软弱土层要少且如采用大推力掘进,则刀盘扭矩将有可能升的很高。此模式下必要时稳定正面的部分压力由压缩空气来实现,气压控制标准值为静水压力值与松散土柱压力值之和。(3)半敞开式模式的技术措施半敞开式掘进模式介于土压平衡和敞开式之间。为既能稳定开挖面和防止地下水渗入,又能避免出碴时螺旋输送机发生喷涌,压缩空气压力控制在11.5bar以内。在该模式掘进时,注入泡沫对碴土进行改良。遇到地层变换、涌水较大时,及时转换模式掘进。3、敞开模式(1)敞开模式适用的工况能够自稳、地下水少的地层。(2)敞开式模式的实现盾构机切削下来的碴土进入土仓内,即刻被螺旋输送机排出。土仓内仅有极少量碴土,基本处于清空状态,掘进中刀盘和螺旋输送机所受的反扭力较小。(3)敞开式模式的技术措施敞开式掘进模式采用高转速、低扭矩推进。采用敞开模式掘进时,易产生掘进中的盾构机滚动和较大震动现象。施工中如不慎引起盾构机滚动,可使刀盘反转来纠正。同步注浆时浆液可能渗流到盾壳与周围土体间的空隙甚至刀盘处,为避免此现象发生可适当增大浆液粘度、缩短注浆时间、适当减低注浆压力来解决。在敞开式掘进时,刀具磨损较大,温度高,岩碴不具软塑性,因此注意观察、检查,及时换刀,注入泡沫和膨润土冷却、润滑及降磨。6
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!