资源描述
课时分层作业(十)微积分基本定理(建议用时:40分钟)基础达标练一、选择题1. (ex2x)dx等于()A1Be1CeDe1C (ex2x)dxe11e,故选C.2已知积分 (kx1)dxk,则实数k()A2B2C1D1Ak2.3设f(x)则f(x)dx() 【导学号:31062095】A. B.C.D.Df(x)dxx2dx (2x)dx.4若函数f(x)xmnx的导函数是f(x)2x1,则f(x)dx()A. B.C. D.Af(x)xmnx的导函数是f(x)2x1,f(x)x2x,f(x)dx (x2x)dx.5设adx,bx2dx,cx3dx,则a,b,c的大小关系是()AabcBcabCacbDcbaabc.二、填空题6d_. 【导学号:31062096】解析 .答案7. (2|x|)dx_.解析因为f(x)2|x|所以答案8已知x(0,1,f(x) (12x2t)dt,则f(x)的值域是_解析f(x) (12x2t)dt(t2xtt2) 2x2(x(0,1)f(x)的值域为0,2)答案0,2)三、解答题9计算定积分: (|2x3|32x|)dx.解设f(x)|2x3|32x|,x3,3,则f(x)26245.10设函数f(x)ax2c(a0),若f(x)dxf(x0),0x01,求x0的值. 【导学号:31062097】解因为f(x)ax2c(a0),且ax2c,所以f(x)dx (ax2c)dx caxc,解得x0或x0(舍去)即x0的值为.能力提升练1若y (sin tcos tsin t)dt,则y的最大值是()A1B2C1D0By (sin tcos tsin t)dtcos x1(cos 2x1)cos 2xcos xcos2xcos x(cos x1)222.2若f(x)x22f(x)dx,则f(x)dx等于()A1BCD1Bf(x)dx是常数,所以可设f(x)x2c(c为常数),所以c2f(x)dx2 (x2c)dx2,解得c,f(x)dx (x2c)dx3设抛物线C:yx2与直线l:y1围成的封闭图形为P,则图形P的面积S等于_ .解析由得x1.如图,由对称性可知,S.答案4已知f(x)若f(f(1)1,则a_.解析因为f(1)lg 10,且3t2dtt3|a303a3,所以f(0)0a31,所以a1.答案15已知f(x) (12t4a)dt,F(a) f(x)3a2dx,求函数F(a)的最小值. 【导学号:31062098】解因为f(x) (12t4a)dt(6t24at) 6x24ax(6a24a2)6x24ax2a2,因为F(a) f(x)3a2 (6x24axa2)dx(2x32ax2a2x)2132a12a21(a1)211.所以当a1时,F(a)的最小值为1.
展开阅读全文