(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(四)立体几何 文.doc

上传人:xt****7 文档编号:3918375 上传时间:2019-12-29 格式:DOC 页数:7 大小:140.50KB
返回 下载 相关 举报
(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(四)立体几何 文.doc_第1页
第1页 / 共7页
(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(四)立体几何 文.doc_第2页
第2页 / 共7页
(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(四)立体几何 文.doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
(四)立体几何1(2018峨眉山市第七教育发展联盟模拟)如图,在四棱锥PABCD中,平面PAB平面ABCD,PBPA,PBPA,DABABC90,ADBC,AB8,BC6,CD10,M是PA的中点(1)求证:BM平面PCD;(2)求三棱锥BCDM的体积(1)证明取PD中点N,连接MN,NC,MN为PAD的中位线,MNAD,且MNAD.又BCAD,且BCAD,MNBC,且MNBC,则BMNC为平行四边形,BMNC,又NC平面PCD,MB平面PCD,BM平面PCD.(2)解过M作AB的垂线,垂足为M,又平面PAB平面ABCD,平面PAB平面ABCDAB,MM平面PAB,MM平面ABCD.MM为三棱锥MBCD 的高,AB8,PAPB,BPA90,PAB边AB上的高为4,MM2,过C作CHAD交AD于点H,则CHAB8,SBCDBCCH6824,VBCDMVMBCDSBCDMM24216.2.如图,在四棱锥PABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:ABEF;(2)若AFEF,求证:平面PAD平面ABCD.证明(1)因为四边形ABCD是矩形,所以ABCD.又AB平面PDC,CD平面PDC,所以AB平面PDC,又因为AB平面ABE,平面ABE平面PDCEF,所以ABEF.(2)因为四边形ABCD是矩形,所以ABAD.因为AFEF,(1)中已证ABEF,所以ABAF.由点E在棱PC上(异于点C),所以点F异于点D,所以AFADA,AF,AD平面PAD,所以AB平面PAD,又AB平面ABCD,所以平面PAD平面ABCD.3(2018安徽省合肥市第一中学模拟)在如图所示的几何体ACBFE中,ABBC,AEEC,D为AC的中点,EFDB.(1)求证:ACFB;(2)若ABBC,AB4,AE3,BF,BD2EF,求该几何体的体积(1)证明EFBD,EF与BD确定平面EFBD,连接DE,AEEC,D为AC的中点,DEAC.同理可得BDAC,又BDDED,BD,DE平面EFBD,AC平面EFBD,FB平面EFBD,ACFB.(2)解由(1)可知AC平面BDEF,VACBFEVABDEFVCBDEFSBDEFAC,ABBC,ABBC,AB4,AC4,BD2,又AE3,DE1.在梯形BDEF中,取BD的中点M,连接MF,则EFDM且EFDM,四边形FMDE为平行四边形,FMDE且FMDE.又BF,BF2FM2BM2,FMBM,S梯形BDEF1,VACBFE44.4.在如图所示的几何体中,EA平面ABCD,四边形ABCD为等腰梯形,ADBC,ADBC,AD1,ABC60,EFAC,EFAC.(1)证明:ABCF;(2)若多面体ABCDFE的体积为,求线段CF的长(1)证明EA平面ABCD,AB平面ABCD,EAAB,作AHBC于点H,在RtABH中,ABH60,BH,得AB1,在ABC中,AC2AB2BC22ABBCcos 603,AB2AC2BC2,ABAC.又ACEAA,AC,EA平面ACFE,AB平面ACFE,又CF平面ACFE,ABCF.(2)解设AEa,作DGAC于点G,由题意可知平面ACFE平面ABCD,又平面ACFE平面ABCDAC,DG平面ABCD,DG平面ACFE,且DG,又VBACFES梯形ACFEABa1a,VDACFES梯形ACFEDGaa,V多面体ABCDFEVBACFEVDACFEa,得a1.连接FG,则FGAC,CF.5如图,在四棱锥PABCD中,底面ABCD为直角梯形,ADBC,ADC90,平面PAD底面ABCD,Q为AD的中点,M是棱PC上的点,PAPD,BCAD.(1)求证:平面PQB平面PAD;(2)若三棱锥ABMQ的体积是四棱锥PABCD体积的,设PMtMC,试确定t的值(1)证明ADBC,BCAD,Q为AD的中点,QDBC且QDBC,四边形BCDQ为平行四边形,CDBQ.ADC90,AQB90,即QBAD.又平面PAD平面ABCD,且平面PAD平面ABCDAD,BQ平面ABCD,BQ平面PAD,BQ平面PQB,平面PQB平面PAD.(2)解PAPD,Q为AD的中点,PQAD,平面PAD平面ABCD,且平面PAD平面ABCDAD,PQ平面PAD,PQ平面ABCD.设PQh,梯形ABCD的面积为S,则三角形ABQ的面积为S,VPABCDSh.又设M到平面ABCD的距离为h,则VABQMVMABQSh,根据题意ShSh,hh,故,M为PC的中点,t1.6(2018四川省成都市第七中学诊断)在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,ABDC,CDAD,平面ABCD平面ADEF,ABAD1,CD2.(1)求证:平面EBC平面EBD;(2)设M为线段EC上一点,3,试问在线段BC上是否存在一点T,使得MT平面BDE?若存在,试指出点T的位置;若不存在,说明理由;(3)在(2)的条件下,求点A到平面MBC的距离(1)证明因为平面ABCD平面ADEF,平面ABCD平面ADEFAD,EDAD,ED平面ADEF,ED平面ABCD,又BC平面ABCD,EDBC.过B作BHCD交CD于点H.故四边形ABHD是正方形,所以ADB45.在BCH中,BHCH1,BCH45,BC,又BDC45,DBC90,BCBD.BDEDD,BD,ED平面EBD,BC平面EBD,BC平面EBC,平面EBC平面EBD.(2)解在线段BC上存在点T,使得MT平面BDE.在线段BC上取点T,使得3,连接MT.在EBC中,CMTCEB,所以MTEB,又MT平面BDE,EB平面BDE,MT平面BDE.(3)解点A到平面MBC的距离就是点A到平面EBC的距离,设点A到平面EBC的距离为h,由(1)得BCEB,BE,BC,利用等积法,可得VAEBCVEABC,即h11sin 135,解得h.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!