资源描述
2019-2020年八年级数学上册 第二章 实数教案 北师大版知识与技能目标: 1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.过程与方法目标: 1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.情感态度与价值观目标: 1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法师生共同讨论法.教师引导,主要由学生分组讨论得出结果.教具准备有两个边长为1的正方形,剪刀.投影片两张:第一张:做一做(记作2.1.1 A);第二张:补充练习(记作2.1.1 B).教学过程.创设问题情境,引入新课师同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?生在小学我们学过自然数、小数、分数.生在初一我们还学过负数.师对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.讲授新课1.问题的提出师请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?生好.(学生非常高兴地投入活动中).师经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.师现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?生甲a是正方形的边长,所以a肯定是正数.生乙因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.生丙由a2=2可判断a应是1点几.师大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.生甲我们组的结论是:因为12=1,22=4,32=9,整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.生乙因为,两个相同因数的乘积都为分数,所以a不可能是分数.师经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?(3)b是有理数吗?师请大家先回忆一下勾股定理的内容.生在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.师在这个题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.生甲因为22=4,32=9,459,所以b不可能是整数.生乙没有两个相同的分数相乘得5,故b不可能是分数.生丙因为没有一个整数或分数的平方为5,所以5不是有理数.师大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.课堂练习(一)课本P25随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在RtABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习投影片(2.1.1 B)为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.课时小结1.通过拼图活动,让学生感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.课后作业(一)课本P49习题2.1解:设长、宽分别为3、2的长方形的对角线长为a,得a2=32+22,a2=13a不可能是整数,也不可能是分数.(二)预习内容:P49P51预习提纲:(1)借助计算器,采用估算的方法探索a2=2中的a的大小.(2)无理数的概念.(3)会判断一个数是有理数或无理数.活动与探究下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2112.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.板书设计2.1.1 数怎么又不够用了(一)一、问题的提出(讨论a2=2中的a既不是整数,也不是分数)二、做一做(由勾股定理得b2=5,且b既不是整数,也不是分数)三、练习四、小结五、作业2.1.2 数怎么又不够用了(二)知识与技能目标: 1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.过程与方法目标: 1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.情感态度与价值观目标: 1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教具准备计算器.投影片三张:第一张:补充练习(记作2.1.2 A);第二张:补充练习(记作2.1.2 B);第三张:补充练习(记作2.1.2 C).教学过程.创设问题情境,引入新课师同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.讲授新课1.导入师请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.生因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.师大家能不能判断一下面积为2的正方形的边长a的大致范围呢?生因为a2大于1且a2小于4,所以a大致为1点几.师很好.a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4a1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.生因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.生因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.生因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.师大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.生我的探索过程如下.边长a面积S1a21S41.4a1.51.96S2.251.41a1.421.9881S2.01641.414a1.4151.999396S2.0022251.4142a1.41431.99996164S2.00024449师还可以继续下去吗?生可以.师请大家继续探索,并判断a是有限小数吗?生a=1.41421356,还可以再继续进行,且a是一个无限不循环小数.师请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)生b=2.236067978,还可以再继续进行,b也是一个无限不循环小数.生边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.师好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.生3=3.0,=0.8,=,生3,是有限小数,是无限循环小数.师上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a,b外,圆周率=3.14159265也是一个无限不循环小数,0.5858858885(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.4.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,0.1010010001(相邻两个1之间0的个数逐次加1).解:有理数有3.14,.无理数有0.1010010001.课堂练习(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,18.解:有理数有0.4583,18.无理数有.(二)补充练习投影片(2.1.2 A)判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.解:(1)错.例1是无理数.(2)错.例是有理数.(3)对.因为无理数就是无限不循环小数,所以是无限小数.(4)对.因为两个符号相反的无理数之和是有理数.例=0.投影片(2.1.2 B)下列各数中,哪些是有理数?哪些是无理数?0.351,3.14159,5.2323332,123456789101112(由相继的正整数组成).解:有理数有0.351,3.14159,无理数有5.2323332,123456789101112.投影片(2.1.2 C)在下列每一个圈里,至少填入三个适当的数.生有理数集合填0,3.无理数集合填,0.323323332.课时小结本节课我们学习了以下内容.1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.课后作业1.P30习题2.2.2.预习内容:平方根.探究与活动设面积为5的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:a2=5a2=5(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a2.2.(3)a2.24.板书设计2.1.2 数怎么又不够用了一、导入二、新课1.无理数的定义2.举例三、练习四、补充练习五、课时小节六、课后作业2.2.1 平方根(一)知识与技能目标: 1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根.3.了解算术平方根的性质.过程与方法目标: 1.加强概念形成过程的教学,提高学生的思维水平.2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神.情感态度与价值观目标: 1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.2.训练学生动脑、动口、动手能力.教学重点了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根.教学难点了解算术平方根的概念、性质.教学方法导学法.教具准备投影片两张:第一张:例题(记作2.2.1 A);第二张:补充练习(记作2.2.1 B).教学过程.新课导入上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.讲授新课师在讲新课之前,我们先回忆一下勾股定理,请同学们回答.生勾股定理就是在直角三角形中两条直角边的平方和等于斜边的平方.师下面请大家根据勾股定量,结合图形完成填空.投影片:(2.2.1A)根据下图填空x2=_y2=_z2=_w2=_师请大家思考后回答.生x2=2,y2=3,z2=4,w2=5.师请大家再分析一下,x,y,z,w中哪些是有理数?哪些是无理数?生x,y,w是无理数,z是有理数.师为什么呢?生因为没有任何整数或分数的平方等于2,3,5,所以x,y,z不是有理数,而22=4,所以z=2.师这位同学分析得非常正确,那么大家能不能把上图中的x,y,z,w表示出来呢?请大家仔细看书后回答.生x=,y=,z=,w=.师若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即=0.师下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3);(4)14. 解:(1)因为302=900,所以900的算术平方根是30,即=30;(2)因为12=1,所以1的算术平方根是1,即=1;(3)因为所以的算术平方根是,即;(4)14的算术平方根是.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?生是通过平方来求的.师对.由此我们可以看出一个正数的平方和求算术平方根是互为逆运算.而且我们在例题中的步骤采取语言叙述和符号表示互相补充的做法,目的是让大家明白算术平方根的概念,以及从计算中进一步体会一个正数的平方和求算术平方根是互为逆运算.在以后的步骤中可以简化.例2自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?解:将h=19.6代入公式h=4.9t2得t2=4,所以t=2(秒)即铁球到达地面需要2秒.师下面大家再观察一下刚才咱们求出的算术平方根有什么特点.生甲算术平方根是整数或分数,即为有理数.生乙不对,那是不是有理数?若是则是,分数还是整数?生丙因为没有任何一个整数或分数的平方等于14,所以不是有理数,而是无理数.师大家的分析都有道理,我提示一下从符号方面考虑.生甲噢,算术平方根是正数,如,2.生乙不对,还有零呢.正数的算术平方根是正数,零的算术平方根为零.师非常正确,那负数的算术平方根是否为负数呢?若(2)2=4.则=2对吗?或者=2对吗?生甲不对.因为算术平方根的定义是一个正数的x的平方等于a,这个正数x就叫做a的算术平方根,所以算术平方根不可能是负数.师由此看来,定义中的a和x都为正数,即算术平方根是非负数,负数没有算术平方根.用式子表示为(a0)为非负数,这是算术平方根的性质.课堂练习(一)P32随堂练习1、2题.(二)补充练习.投影片:(2.2.1 B)一、填空题1.若一个数的算术平方根是,则这个数是_.2.的算术平方根是_.3.正数_的平方为的算术平方根为_.4.(1.44)2的算术平方根为_.5.的算术平方根为_,=_.二、求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(3.9)2;(3)2.25;(4)2.答案:一、1.5 2. 3. 4.1.44 5.3 0.2.二、(1)(4).课时小结本节课学习了算术平方根的概念,理解了求一个正数的平方和求算术平方根是互为逆运算,求一个非零数的算术平方根,以及算术平方根的性质,即算术平方根是非负数.课后作业P33习题1、3.活动与探究1.一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?2.一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?解:设原来的正方形边长为a,面积为S1,后来的正方形面积为S2.1.S1=a2,S2=na2(a)2后来的边长(a)为原来边长的倍.2.S1=a2,S2=100a2=(10a)2后来的边长10a为原来边长的10倍.板书设计一、算术平方根的定义算术平方根的性质二、举例三、练习四、作业2.2.2 平方根(二)知识与技能目标: 1.了解平方根的概念、开平方的概念.2.明确算术平方根与平方根的区别与联系.3.进一步明确平方与开方是互为逆运算.过程与方法目标: 1.加强概念形成过程的教学,让学生不仅掌握概念,而且知晓它的理论数据.2.提倡学生进行自学,并能与同学互相交流与合作,变学会知识为会学知识.3.培养学生的求同和求异思维,能从相似的事物中观察到PX 们的共同点和不同点.情感态度与价值观目标: 通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.教学重点1.了解平方根、开平方的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.教学难点1.平方根与算术平方根的区别与联系.2.负数没有平方根,即负数不能进行开平方运算的原因.教学方法讨论比较法.即主要靠大家讨论得出结论,同时对相似的概念进行比较.这样不仅能正确区分这些概念,还能使学生学得更扎实.教具准备投影片两张:第一张:平方根与算术平方根的联系与区别(记作2.2.2 A);第二张:补充练习(记作2.2.2 B).教学过程.创设问题情境,引入新课上节课我们学习了算术平方根的概念,性质.知道若一个正数x的平方等于a,即x2=a.则x叫a的算术平方根,记作x=,而且也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(2)2=4,则2叫4的什么根呢?下面我们就来讨论这个问题.讲授新课1.平方根、开平方的概念师请大家先思考两个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于的数有几个?平方等于0.64的数呢?生3的平方也是9.的平方是,的平方也是,即平方等于的数有两个.生平方等于9的数有两个,平方等于的数有两个,由此可知平方等于0.64的数也有两个.师根据上一节课的内容,我们知道了是9的算术平方根,是的算术平方根,那么3,叫9、的什么根呢?请大家认真看书后回答.生3,分别叫9、的平方根.师那是不是说3叫9的算术平方根,3也叫9的算术平方根,即9的算术平方根有一个是3,另一个是3呢?生不对.根据平方根的定义,一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和3的平方都等于9,由定义可知3和3都是9的平方根,即9的平方根有两个3和3,9的算术平方根只有一个是3.师由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?请分小组讨论后选代表回答.生平方根的定义中是有一个数x的平方等于a,则x叫a的平方根,x没有肯定是正数还是负数或零;而算术平方根的定义中是有一个正数x的平方等于a,则x叫a的算术平方根,这里的x只能是正数.由此看来都有x2=a,这是它们的相同之处,而x的要求不同,这是它们的不同之处.师这位同学分析判断能力特棒,下面我再详细作一总结.投影片:(2.2.2 A)平方根与算术平方根的联系与区别联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有.(3)0的平方根,算术平方根都是0.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.(3)表示法不同:正数a的平方根表示为,正数a的算术平方根表示为.(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个.师什么叫开平方呢?生求一个数a的平方根的运算,叫开平方(extraction of square root),其中a叫被开方数.师我们共学了几种运算呢,这几种运算之间有怎样的联系呢?请大家讨论后回答.生我们共学了加、减、乘、除、乘方、开方六种运算.加与减互为逆运算,乘与除互为逆运算,乘方与开方互为逆运算.师大家非常聪明且爱动脑子,回答问题正确率极高,很值得表扬,希望你们能继续发扬下去.2.平方根的性质师请大家思考以下问题.(1)一个正数有几个平方根.(2)0有几个平方根?(3)负数呢?生第一个问题在前面已作过讨论,一个正数9有两个平方根3和3;因为只有零的平方为零,所以0有一个平方根是零.因为任何数的平方都不是负数,所以负数没有平方根,例如3没有平方根.师太精彩了.一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.3.讲解例题例求下列各数的平方根.(1)64;(2);(3)0.0004;(4)(25)2;(5)11.解:(1)因为(8)2=64,所以64的平方根是8,即=8;(2)因为()2=,所以的平方根是,即=;(3)因为(0.02)2=0.0004,所以0.0004的平方根是0.02,即=0.02;(4)因为(25)2=(25)2,所以(25)2的平方根是25,即=25;(5)11的平方根是.师请大家口述上题中各数的算术平方根.生64的算术平方根为8;的算术平方根为;0.0004的算术平方根为0.02; (25)2的算术平方根为25;11的算术平方根为.4.想一想(1)()2等于多少?()2等于多少?(2)()2等于多少?(3)对于正数a,()2等于多少?解:(1)( )2=64;()2=;(2)( )2=7.2;(3)( )2=a(a0).课堂练习(一)随堂练习1.求下列各数的平方根1.44,0,8,441,196,104解:因为(1.2)2=1.44,所以1.44的平方根是1.2,即=1.2;因为02=0,所以0的平方根是0.即=0;因为()2=8.所以8的平方根是;因为,所以的平方根是,即;因为(21)2=441,所以441的平方根是21,即=21;因为(14)2=196,所以196的平方根是14,即=14;因为104=,()=,所以的平方根是,即=.2.填空(1)25的平方根是_;(2) =_;(3)()2=_.解:(1)5;(2)5;(3)5.(二)补充练习投影片:(2.2.2 B)1.判断下列各数是否有平方根?并说明理由.(1)(3)2;(2)0;(3)0.01;(4)52;(5)a2;(6)a22a+22.求下列各数的平方根.(1)121;(2)0.01;(3)2;(4)(13)2;(5)(4)3.1.分析:一个数有没有平方根,就看它是不是负数,是负数就没有平方根;不是负数就有平方根.解:(1)(3)2=90(3)2有平方根(2)0的平方根是它本身0有平方根(3)0.0100.01没有平方根(4)52=25052没有平方根(5)当a=0时,a2=0,有平方根当a0时,a20,没有平方根.(6)a22a+2=(a1)2+1,无论a取何有理数,(a1)2+10a22a+2有平方根.说明:(1)负数没有平方根(2)第(4)小题容易犯错误,52=250.2.分析:根据平方与开平方互为逆运算,可以通过平方运算来求一个数的平方根,其中2,(13)2=169,(4)3=64,把带分数化为假分数,含有乘方运算先求出它的幂.解:(1)(11)2=121121的平方根是11即=11;(2)(0.1)2=0.010.01的平方根是0.1即=0.1;(3)2,()2=2的平方根是即=;(4)(13)2=169,(13)2=169(13)2的平方根是13即=13;(5)(4)3=64,(8)2=64(4)3的平方根是8即=8.课时小结本节课学了如下内容.1.平方根的概念.2.平方根的性质.3.平方根与算术平方根的区别与联系.4.求某些非负数的算术平方根和平方根.课后作业习题2.4.活动与探究1.对于任意数a,一定等于a吗?解:不一定当a=2时,=2当a=时,当a=0时,=0当a=2时,=2当a时,=.综上所述,当a0时,=a当a0时,=a2.中的被开方数a在什么情况下有意义,()2等于什么?解:因为任意数的平方都是非负数,也就是非负数才有平方根,所以被开方数a必须是正数或零,即非负数时有意义.当a=1时,()2=12=1当a=4时,()2=22=4当a=时,当a=时,当a=0时,()2=0.所以()2=a(a0)板书设计2.2.2 平方根(二)一、平方根的定义;平方根的性质;平方根与算术;平方根的区别与联系.二、例题讲解三、练习四、小结五、作业2.3 立方根知识与技能目标: 1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算.3.了解立方根的性质.4.区分立方根与平方根的不同.过程与方法目标: 1.在学了平方根的基础上,要求学生能用类比的方法学习立方根的有关知识,领会类比思想.2.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.情感态度与价值观目标: 当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成.教学重点立方根的概念.教学难点1.正确理解立方根的概念.2.会求一个数的立方根.3.区分立方根与平方根的不同之处.教学方法类比学习法.教具准备投影片两张:第一张:平方根与立方根的联系与区别(记作2.3 A);第二张:补充练习(记作2.3 B).教学过程.新课导入上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根,即x=.若正方体的棱长为a,体积为8,根据正方体体积的公式得a3=8,那a叫8的什么呢?本节课请大家根据上节课的内容自己来类推出结论,若x3=a,则x叫a的什么呢?.新课讲解1.师请大家先回忆平方根的定义.生若一个数x的平方等于a,即x2=a,则x叫a的平方根.师在平方根定义的基础上,若x3=a,则x叫a的什么呢?请大家自己猜想然后讨论得出结果.生因为x2=a,x叫a的平方根,所以当x的立方等于a时,x叫a的立方根.师当x4=a时,x叫a的什么根呢?生当x的4次方等于a时,x叫a的4次方根.师大家应为这位同学的精彩回答而鼓掌.下面大家能不能再根据平方根的写法来类推立方根的记法呢?生能.若x的平方等于a,则x叫a的平方根,记作x=,读作x等于正、负二次根号a,简称为x等于正,负根号a.若x的立方等于a,则x叫a的立方根,记作x=,读作x等于正、负三次根号a,简称x等于正、负根号a.师请大家对这位同学的回答展开讨论,小组总结后选代表发言.生甲我认为这位同学回答得不对.如果x2=a,则x=,x3=a时,x=也成立的话,那如何区分平方根与立方根呢?生乙因为乘方与开方是互为逆运算,求立方根可通过逆运算立方来求,如x3=8,因为23=8,所以x=2,只有一个根而不是2,所以立方根的个数不正确.师大家的分析非常有道理,请认真看书第13、14页可知,若一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root;也叫三次方根)如2是8的立方根,记为x=,读作x等于三次根号a.开立方的定义师大家先回忆开平方的定义,再类推开立方的定义.生求一个数a的平方根的运算,叫做开平方,则求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数.(2)立方根的性质师2的立方等于多少?是否有其他的数,它的立方也是8?生2的立方等于8,(2)3=8,所以没有其他的数的立方等于8.师3的立方等于多少?是否有其他的数,它的立方也是27?生3的立方等于27,33=27,所以没有其他的数的立方等于27.师0的立方等于多少?0有几个立方根?生0的立方等于0,0有1个立方根是0.师从刚才的讨论中,大家总结一下正数有几个立方根?0有几个立方根?负数有几个立方根?生正数有一个立方根,0有一个立方根是0,负数有一个立方根.师对.正数有一个正的立方根、负数有一个负的立方根,0的立方根有一个,是0.(3)平方根与立方根的区别与联系.师我们已经学习了平方根与立方根的定义,并会求某些数的平方根和立方根,下面请大家说说它们的联系与区别.生从定义来看,若一个数x的平方等于a,即x2=a,则x叫a的平方根;若一个数x的立方等于a,即x3=a,则x叫a的立方根,都是一个数x的乘方等于a,但一个是平方,另一个是立方.生一个正数的平方根有两个,一个负数没有平方根,零的平方根有一个是零;一个正数的立方根有一个,并且是正数,一个负数有一个负的立方根,零的立方根有一个是零.生它们的表示方法和读法不同,一个正数a的平方根表示为,立方根表示为.师很好.大家现在已经具备了一定的分析判断能力,这对大家以后的学习和工作非常有帮助,继续发扬下去,你们都将前途无量,下面我再系统地总结一下.投影片:(2.3 A)平方根与立方根的联系与区别.联系:(1)0的平方根、立方根都有一个是0.(2)平方根、立方根都是开方的结果.区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“如果一个数的立方等于a,这个数就叫做a的立方根.”(2)个数不同:一个正数有两个平方根,一个正数有一个立方根;一个负数没有平方根,一个负数有一个立方根.(3)表示法不同正数a的平方根表示为,a的立方根表示为.(4)被开方数的取值范围不同中的被开方数a是非负数;中的被开方数可以是任何数.2.例题讲解例1求下列各数的立方根:(1)27;(2);(3)0.216;(4)5.解:(1)因为(3)3=27,所以27的立方根是3,即=3;(2)因为()3=,所以的立方根是,即=;(3)因为0.63=0.216,所以0.216的立方根是0.6,即=0.6;(4)5的立方根是.师请大家思考下列问题.表示a的立方根,则()3等于什么?等于什么?大家可以先举例后找规律.生23=8,=2,()3=8;(2)3=8,=2;()3=8;()3=,;()3=,.()3=a.师若x3=a,则x=,x3=()3=a.()3=a.又a3是a的立方,所以a3的立方根就是a,所以=a.下面就这两个式子进行练习.例2求下列各式的值:(1);(2);(3);(4)()3解:(1) =2;(2) =;(3) =;(4)()3=9.课堂练习(一)随堂练习1.求下列各式的值:.解:;2.一个正方体,它的体积是棱长为3厘米的正方体体积的8倍,这个正方体的棱长是多少?解:设正方体的棱长是x厘米,得x3=833x3=216x=6(厘米)答:这个正方体的棱长是6厘米.(二)补充练习投影片:(2.3 B)1.求下列各数的立方根:0,1,6,0.0012.求下列各式的值:3.下列说法对不对?4没有立方根;1的立方根是1;的立方根是;5的立方根是;64的算术平方根是8.1.解:因为03=0,所以0的立方根为0.即=0;因为13=1,所以1的立方根为1.即=1;因为的立方根为.即;6的立方根为;的立方根为,即;0.13=0.001,所以0.001的立方根为0.1,即=0.1.2.解:;.3.答案:错.因为负数也有立方根;错.因为1的立方根是1;错.的立方根是,平方根是;对.5的立方根是,;对.议一议1.某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?解:设原来的球形储气罐的半径为r1,后来的储气罐的半径为r2,由球体积公式V= r3得8r13=r238r13=r23(2r1)3=r23r2=2r1即新储气罐的半径是旧储气罐半径的2倍.2.一个正方体的体积变为原来的n倍,它的棱长变为原来的多少倍?解:设原正方体的棱长为a,后来的正方体的棱长为b,得na3=b3b=.即后来的棱长变为原来的倍.课时小结本节课学了如下内容:1.立方根的定义.2.立方根的性质.3.开立方的定义.4.平方根与立方根的区别与联系.5.会求一个数的立方根.课后作业习题2.5.活动与探究1.求下列各式中的x.(1)8x3+27=0;(2)(x1)30.343=0;(3)81(x+1)4=16;(4)32x51=0.分析:先把每一个式子都化成x3=的形式,然后再根据平方根或立方根的定义来求,解:(1)由8x3+27=0.8x3=27x3=x=;(2)由(x1)30.343=0(x1)3=0.343x1=0.7x=1.7;(3)由81(x+1)4=16(x+1)4=x+1=x=1x=或x=;(4)由32x51=0x5=x=.2.求满足+1=x的x的值.解:=x1x1=1或x1=0或x1=1x=0或x=1或x=23.计算(1);(2) .解:(1);(2) =.板书设计2.3 立方根一、(1)立方根开立方的定义(2)立方根的性质(3)立方根与平方根的联系与区别二、例题讲解(求立方根)三、练习四、议一议五、小结六、作业2.4 公园有多宽知识与技能目标: 1.能通过估算检验计算结果的合理性,能估计一个无理数的大致范围,并能通过估算比较两个数的大小.2.掌握估算的方法,形成估算的意识,发展学生的数感.过程与方法目标: 1.能估计一个无理数的大致范围,培养学生估算的意识.2.让学生掌握估算的方法,训练他们的估算能力.情感态度与价值观目标: 估算也是现实生活中一种常用的解决问题的方法,比如在工厂工人师傅要做一个正方体,使它的体积为900立方米,现有边长为5米,8米,10米的三种正方形材料,问用哪一种材料作为正方体的表高比较合适,而工作师傅在领材料之前并不晓得材料的规格,那么在领材料时必须经过估算大致确定用哪一种材料,这就是估算的用处.这样的例子随处可见,有时问题是突然出现.因此有必要对学生进行这方面的训练,使他们在以后的工作中能处世不惊、沉着应战,用学到的知识去顺利解决实际生活中的难题.教学重点1.让学生理解估算的意义,发展学生的数感.2.掌握估算的方法,提高学生的估算能力.教学难点掌握估算的方法,并能通过估算比较两个数的大小.教学方法指导尝试法.教具准备投影片三张:第一张:公园有多宽(记作2.4 A);第二张:估算的步骤(记作2.4 B);第三张:补充练习(记作2.4 C).教学过程.导入新课师同学们,请大家说出咱们班男生和女生的平均身高.生男生大约170厘米,女生大约159厘米.师这位同学是怎样得出结果的呢?生我猜的.师猜字的意思就是根据自己的判断而估计得出的结果,它并不是准确值,但也不是无中生有,是有一定的理论根据的,本节课我们就来学习有关估算的方法.讲授新课1.投影片:(2.4 A)某地开辟了一块长方形的荒地,新建一个以环保为主题的公园,已知这块荒地的长是宽的2倍,它的面积为400000米2.(1)公园的宽大约是多少?它有1000米吗?(2)如果要求误差小于10米,它的宽大约是多少?(3)该公园中心有一个圆形花圃,它的面积是800米2,你能估计它的半径吗?(误差小于1米)师要想知道公园的宽大约是多少,首先应根据已知条件求出已知量与未知量的关系式,那么它们之间有怎样的联系呢?生因为已知长方形的长是宽的2倍,且它的面积为40000米2,根据面积公式就能找到它们的关系式.可设公园的宽为x米,则公园的长为2x米,由面积公式得:2x2=400000x2=xx00所以公园的宽x就是面积xx00的算术平方根.师非常精彩.在估算时我们首先要大致确定数的范围,因此有必要做一些准备工作.请大家先计算出20以内正整数的平方和10以内正整数的立方.并加以记忆,对我们的估算很有帮助.生12=1;22=4;32=9;42=16;52=25;62=36;72=49;82=64;92=81;102=100;112=121;122=144;132=169;142=196;152=225;162=256;172=289;182=324;192=381;202=400.13=1;23=8;33=27;43=64;53=125;63=216;73=343;83=512;93=729;103=1000.师下面我们可以进行估算,请同学们分组讨论而后回答.生公园的宽没有1000米,因为1000的平方是1000000,而xx00小于1000000,所以它没有1000米宽.师大家能不能具体确定一下公园的宽是几位数呢?生因为100的平方是10000,1000的平方是1000000,而xx00大于10000小于1000000,所以公园的宽比100大而比1000小,是三位数.师回答问题的这一组同学总结得非常好,大家在估算时就可用这样的方法大致估算一下是几位数,这样使范围缩小,为下一步的估算作准备.由此看来公园的宽大约是几百米,下面请大家继续讨论做(2)题.生因为400的平方等于160000,500的平方为250000,所以公园的宽x应比400大比500小.师所以x应为400多,再继续估算,估计十位上的数字是几.生因为440的平方为193600,450的平方为202500,所以x应比440大比450小,故十位上的数为4.师因为题目要求误差小于10米,好应精确到十位,所以我们估算出十位上的数就行了,即公园的宽x应为440米,现在我们可以根据刚才的估算来总结一下步骤.投影片:(2.4 B)1.估计是几位数.2.确定最高位上的数字(如百位).3.确定下一位上的数字.(如十位)4.依次类推,直到确定出个位上的数,或者按要求精确到小数点后的某一位.在以后的估算中我们就可按这样的步骤进行.再看(3)题,先列出关系式.生设半径为x米,则有x2=800x2=255.即x2255因为102=100,1002=10000,所以x应是两位数,又因为152=255,162=256,所以x就比15大比16小,应为15点几,所以应为15米.师很好.在题目中要求误差小于1,而不是精确到1,所以15米和16米都满足要求,即x应为15米或16米.2.议一议(1)下列计算结果正确吗?你是怎样判断的?与同伴交流.0.066;96;60.4(2)你能估算的大小吗?(误差小于1).师请大家自己先考虑,小组讨论然后派代表发言.生甲因为0.652=0.4225,0.662=0.4356,而0.43大于0.4225小于0.4356,所以应大于0.65小于0.66,所以估算错误.生乙第2个错.因为10的立方是1000,900比1000小,所以900的立方根应比1000的立方根小,即小于10,所以估算错误.生丙第3个错.因为60的平方是3600,而2536小于3600,所以应比60小,所以估算错误.师第(2)小题请大家按总结的步骤进行.生(1)先确定位数因为1的立方为1,10的立方为1000,900大于1小于1000,所以应是一位数.(2)确定个位上数字.因为9的立方为729,所以个位上的数字应为9.师这位同学已经掌握了估算的步骤,只是有些语言不规范.如在确定位数时,的整数位数应是一位,还有小数部分,由于误差要小于1,所以估算到整数位就行,所以的大小应为9或10.3.例题讲解例1生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的,则梯子比较稳定,现有一长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.6米高的墙头吗?解:如下图中,左图为实际图形,右图为转化成的数学图形.设梯子稳定摆放时的高度为x米,此时梯子底端离墙的距离恰为梯子长度的,根据勾股定理有x2+(6)2=62即x2=32,x=因为5.62=31.3632所以5.6因此,梯子稳定摆放时,它的顶端能够达到5.6米高的墙头.例2通过估算,比较的
展开阅读全文