2019-2020年中考数学试题分类解析汇编专题(II)几何问题.doc

上传人:tian****1990 文档编号:2662083 上传时间:2019-11-28 格式:DOC 页数:18 大小:159.50KB
返回 下载 相关 举报
2019-2020年中考数学试题分类解析汇编专题(II)几何问题.doc_第1页
第1页 / 共18页
2019-2020年中考数学试题分类解析汇编专题(II)几何问题.doc_第2页
第2页 / 共18页
2019-2020年中考数学试题分类解析汇编专题(II)几何问题.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
2019-2020年中考数学试题分类解析汇编专题(II)几何问题一、选择题1(3分)(xx杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A12cm2B15cm2C24cm2D30cm2考点:圆锥的计算专题:计算题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长母线长2解答:解:底面半径为3,高为4,圆锥母线长为5,侧面积=2rR2=15cm2故选B点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形2(3分)(xx杭州)在直角三角形ABC中,已知C=90,A=40,BC=3,则AC=()A3sin40B3sin50C3tan40D3tan50考点:解直角三角形分析:利用直角三角形两锐角互余求得B的度数,然后根据正切函数的定义即可求解解答:解:B=90A=9040=50,又tanB=,AC=BCtanB=3tan50故选D点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系3(3分)(xx杭州)下列命题中,正确的是()A梯形的对角线相等B菱形的对角线不相等C矩形的对角线不能相互垂直D平行四边形的对角线可以互相垂直考点:命题与定理专题:常规题型分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确故选D点评:本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理4(xx杭州)下列“表情图”中,属于轴对称图形的是()ABCD考点:轴对称图形分析:根据轴对称的定义,结合各选项进行判断即可解答:解:A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C不是轴对称图形,故本选项错误;D是轴对称图形,故本选项正确;故选D点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题5(xx杭州)在ABCD中,下列结论一定正确的是()AACBDBA+B=180CAB=ADDAC考点:平行四边形的性质分析:由四边形ABCD是平行四边形,可得ADBC,即可证得A+B=180解答:解:四边形ABCD是平行四边形,ADBC,A+B=180故选B点评:此题考查了平行四边形的性质此题比较简单,注意掌握数形结合思想的应用6(xx杭州)在一个圆中,给出下列命题,其中正确的是()A若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理分析:根据直线与圆的位置关系进行判断即可解答:解:A圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B当两圆经过两条直线的交点时,圆与两条直线有三个交点;C两条平行弦所在直线没有交点,故本选项正确;D两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系7(xx杭州)如图是某几何体的三视图,则该几何体的体积是()ABCD考点:由三视图判断几何体分析:由三视图可看出:该几何体是个正六棱柱,其中底面正六边形的边长为6,高是2根据正六棱柱的体积=底面积高即可求解解:解:由三视图可看出:该几何体是个正六棱柱,其中底面正六边形的边长为6,高2,所以该几何体的体积=6622=108故选C点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键8(xx杭州)在RtABC中,C=90,若AB=4,sinA=,则斜边上的高等于()ABCD考点:解直角三角形专题:计算题分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高解答:解:根据题意画出图形,如图所示,在RtABC中,AB=4,sinA=,BC=ABsinA=2.4,根据勾股定理得:AC=3.2,SABC=ACBC=ABCD,CD=故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键9(xx杭州)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是()A内含B内切C外切D外离考点:圆与圆的位置关系。分析:两圆的位置关系有5种:外离;外切;相交;内切;内含若dR+r则两圆相离,若d=R+r则两圆外切,若d=Rr则两圆内切,若RrdR+r则两圆相交本题可把半径的值代入,看符合哪一种情况解答:解:两圆的半径分别为2cm和6cm,圆心距为4cm则d=62=4,两圆内切故选B点评:本题主要考查两圆的位置关系两圆的位置关系有:外离(dR+r)、内含(dRr)、相切(外切:d=R+r或内切:d=Rr)、相交(RrdR+r)10(xx杭州)已知平行四边形ABCD中,B=4A,则C=()A18B36C72D144考点:平行四边形的性质;平行线的性质。专题:计算题。分析:关键平行四边形性质求出C=A,BCAD,推出A+B=180,求出A的度数,即可求出C解答:解:四边形ABCD是平行四边形,C=A,BCAD,A+B=180,B=4A,A=36,C=A=36,故选B点评:本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大11(xx杭州)如图,在RtABO中,斜边AB=1若OCBA,AOC=36,则()A点B到AO的距离为sin54 B点B到AO的距离为tan36C点A到OC的距离为sin36sin54D点A到OC的距离为cos36sin54考点:解直角三角形;点到直线的距离;平行线的性质。分析:根据图形得出B到AO的距离是指BO的长,过A作ADOC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36,即可判断A、B;过A作ADOC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36,AO=ABsin54,求出AD,即可判断C、D解答:解:A、B到AO的距离是指BO的长,ABOC,BAO=AOC=36,在RtBOA中,BOA=90,AB=1,sin36=,BO=ABsin36=sin36,故本选项错误;B、由以上可知,选项错误;C、过A作ADOC于D,则AD的长是点A到OC的距离,BAO=36,AOB=90,ABO=54,sin36=,AD=AOsin36,sin54=,AO=ABsin54,AD=ABsin54sin36=sin54sin36,故本选项正确;D、由以上可知,选项错误;故选C点评:本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是找出点A到OC的距离和B到AO的距离,熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目二、填空题1(4分)(xx杭州)已知直线ab,若1=4050,则2=13910考点:平行线的性质;度分秒的换算分析:根据对顶角相等可得3=1,再根据两直线平行,同旁内角互补列式计算即可得解解答:解:3=1=4050,ab,2=1803=1804050=13910故答案为:13910点评:本题考查了平行线的性质,对顶角相等的性质,度分秒的换算,要注意度、分、秒是60进制2(xx杭州)在RtABC中,C=90,AB=2BC,现给出下列结论:sinA=;cosB=;tanA=;tanB=,其中正确的结论是 (只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形专题:探究型分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论解答:解:如图所示:在RtABC中,C=90,AB=2BC,sinA=,故错误;A=30,B=60,cosB=cos60=,故正确;A=30,tanA=tan30=,故正确;B=60,tanB=tan60=,故正确故答案为:点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键3(xx杭州)四边形ABCD是直角梯形,ABCD,ABBC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差解答:解:AB旋转一周形成的圆柱的侧面的面积是:223=12;AC旋转一周形成的圆柱的侧面的面积是:222=8,则|S1S2|=4故答案是:4点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键4(xx杭州)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为15cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为1cm考点:菱形的性质;认识立体图形;几何体的展开图。分析:由底面为菱形的直棱柱,高为10cm,体积为150cm3,由体积=底面积高,即可求得这个棱柱的下底面积,又由该棱柱侧面展开图的面积为200cm2,即可求得底面菱形的周长与BC边上的高AE的长,由勾股定理求得BE的长,继而求得CE的长解答:解:底面为菱形的直棱柱,高为10cm,体积为150cm3,这个棱柱的下底面积为:15010=15(cm2);该棱柱侧面展开图的面积为200cm2,高为10cm,底面菱形的周长为:20010=20(cm),AB=BC=CD=AD=204=5(cm),AE=S菱形ABCDBC=155=3(cm),BE=4(cm),EC=BCBE=54=1(cm)故答案为:15,1点评:此题考查了菱形的性质、直棱柱的性质以及勾股定理此题难度不大,注意审题,掌握直棱柱体积与侧面积的求解方法三、解答题1(8分)(2014杭州)在ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P求证:PB=PC,并直接写出图中其他相等的线段考点:全等三角形的判定与性质;等腰三角形的性质分析:可证明ABFACE,则BF=CE,再证明BEPCFP,则PB=PC,从而可得出PE=PF,BE=CF解答:解:在ABF和ACE中,ABFACE(SAS),ABF=ACE(全等三角形的对应角相等),BF=CE(全等三角形的对应边相等),AB=AC,AE=AF,BE=BF,在BEP和CFP中,BEPCFP(AAS),PB=PC,BF=CE,PE=PF,图中相等的线段为PE=PF,BE=CF点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大2(10分)(xx杭州)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长考点:作图应用与设计作图分析:(1)利用三角形三边关系进而得出符合题意的图形即可;(2)利用三角形外接圆作法,首先作出任意两边的垂直平分线,即可得出圆心位置,进而得出其外接圆解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4三角形为等边三角形,此时外接圆的半径为,当三条线段分别为3,4,5时其外接圆周长为:22.5=5; 当三条线段分别为4,4,4时其外接圆周长为:2=点评:此题主要考查了三角形外接圆的作法和三角形三边关系等知识,得出符合题意的三角形是解题关键3(xx杭州)如图,四边形ABCD是矩形,用直尺和圆规作出A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹)连结QD,在新图形中,你发现了什么?请写出一条考点:作图复杂作图分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可解答:解:如图所示:发现:DQ=AQ或者QAD=QDA等等点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键4(xx杭州)如图,在等腰梯形ABCD中,ABDC,线段AG,BG分别交CD于点E,F,DE=CF求证:GAB是等腰三角形考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定专题:证明题分析:由在等腰梯形ABCD中,ABDC,DE=CF,利用SAS,易证得ADEBCF,即可得DAE=CBF,则可得GAB=GBA,然后由等角对等边,证得:GAB是等腰三角形解答:证明:在等腰梯形中ABCD中,AD=BC,D=C,DAB=CBA,在ADE和BCF中,ADEBCF(SAS),DAE=CBF,GAB=GBA,GA=GB,即GAB为等腰三角形点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定此题难度不大,注意掌握数形结合思想的应用5(xx杭州)如图,在梯形ABCD中,ADBC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE(1)求证:AF=DE;(2)若BAD=45,AB=a,ABE和DCF的面积之和等于梯形ABCD的面积,求BC的长考点:等腰梯形的性质;全等三角形的判定与性质;等边三角形的性质。专题:探究型。分析:(1)根据等腰梯形的性质和等边三角形的性质以及全等三角形的判定方法证明AEDDFA即可;(2)如图作BHAD,CKAD,利用给出的条件和梯形的面积公式即可求出BC的长解答:(1)证明:在梯形ABCD中,ADBC,AB=CD,BAD=CDA,而在等边三角形ABE和等边三角形DCF中,AB=AE,DC=DF,且BAE=CDF=60,AE=DF,EAD=FDA,AD=DA,AEDDFA(SAS),AF=DE;(2)解:如图作BHAD,CKAD,则有BC=HK,BAD=45,HAB=KDC=45,AB=BH=AH,同理:CD=CK=KD,S梯形ABCD=,AB=a,S梯形ABCD=,而SABE=SDCF=a2,=2a2,BC=a点评:本题综合性的考查了等腰梯形的性质、等边三角形的性质、全等三角形的判定、全等三角形的性质以及等于直角三角形的性质和梯形、三角形的面积公式,属于中档题目
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!