2019-2020年高二数学上册 8.3《平面向量的分解定理》教案(1) 沪教版.doc

上传人:tia****nde 文档编号:2646781 上传时间:2019-11-28 格式:DOC 页数:3 大小:117.50KB
返回 下载 相关 举报
2019-2020年高二数学上册 8.3《平面向量的分解定理》教案(1) 沪教版.doc_第1页
第1页 / 共3页
2019-2020年高二数学上册 8.3《平面向量的分解定理》教案(1) 沪教版.doc_第2页
第2页 / 共3页
2019-2020年高二数学上册 8.3《平面向量的分解定理》教案(1) 沪教版.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述
2019-2020年高二数学上册 8.3平面向量的分解定理教案(1) 沪教版一、教学目标 1理解和掌握平面向量的分解定理;2掌握平面内任一向量都可以用两个不平行向量来表示;掌握基的概念,并能够用基表示平面内的向量;3根据学生已有的物理知识经验,在熟悉的问题情景中,体会研究向量分解的必要性。4经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想。二、教学重点及难点 :平面向量分解定理的发现和形成过程;分解唯一性的说明。三、教学过程设计(一)、 设置情景,引入课题(1)观察前面我们学过向量的加法,知道两个向量可以合成一个向量,反过来,一个向量是否可以分解成两个向量呢?下面让我们来看一个实例:实例:一盏电灯,可以由电线CO吊在天花板上,也可以由电线OA和绳BO拉住.CO所受的力F与电灯重力平衡,拉力F可以分解为AO与BO所受的拉力F1和 F2 .思考:从这个实例我们看到了什么?答:一个向量可以分成两个不同方向的向量.(2)复习正交分解,并抽象为数学模型(二)、探索探究,主动建构概括讨论,提出新问题:如果向量是同一平面内的两个不平行的向量,是该平面内的一个非零向量,是否能用向量表示向量? 数学实验1实验设计:(1)实验目的:通过实验让学生探究:给定平面内的两个不平行向量,对于给定的非零向量是否能分解成方向上的两个向量,且分解是否是唯一的?(2)实验步骤:a.以四位同学为一组,给每一位同学一个图,上面有两个不平行向量和;b.每个同学先独立作图;c.小组对照,比较所分解的两向量的长度和方向是否相同.并得出结论.(3)实验报告:(由学生发言)可以分解,且分解的长度和方向唯一的.师:既然可以分解并且是唯一的,能不能用数学式子把和的关系表示出来?生:是不平行向量,是平面内给定的向量,在平面内任取一点O(1)作;(2)过C作平行于直线OB的平行线与直线OA相交于点M;(3)过C作平行于直线OA的平行线与直线OB相交于点N;(4)四边形为平行四边形,由向量平行的充要条件可知存在实数,使得,则.对于给定的向量可以唯一分解成给定的两个不平行向量,那么对于任意的向量是否也可以得到同样的结论呢?下面让我们来做一个实验.数学实验2实验设计:(1)实验目的:通过几何画板向量分解动画,让学生体会对于任意向量都可以分解成给定的两个不平行向量,且分解是唯一的.(2)实验步骤: a.利用几何画板画出两个不平行向量,画出一个任意向量(该向量可以任意拖动终点来改变); b.学生从拖动中体会其向量的任意性.(一些特殊位置,) (3)实验报告:3探究结果几何角度:平面内的任一向量都可以表示为给定的两个不平行向量的线性组合,即,且分解是唯一的.代数角度:说明唯一性:说明:(1)当时,(2)当时,假设,则有=.由于不平行,故,即.4概括得出定理:平面向量分解定理:如果是同一平面内的两个不平行向量,那么对于这一平面内的任意向量,有且只有一对实数,使.我们把不平行的向量叫做这一平面内所有向量的一组基.注意:(1)基底不共线;(2)将任一向量在给出基底、的条件下进行分解;(3)基底给定时,分解形式唯一,是被,唯一确定的数量(通过实验的制作,学生的动手作图能力得到提高,通过学生对实验结果的讨论,学生的抽象概括能力,语言表达能力得到训练.) (三)例题分析例1(教材P66例2)如图:平行四边形ABCD的两条对角线相交于点M,且 ,分别用表示和.解: 在平行四边形ABCD中,注:(1)把作为一组基,用向量表示平面内的任何一个向量 (2)平行四边形法则简化为三角形法则。练习:学生完成教材后面练习P67 (2)思考:由例1和练习(2)平行四边形ABCD中还有哪些线段可以作为一组基?哪些线段不可以作为一组基?为什么?思考题(教材P67例 3)已知是不平行的两个向量,是实数,且,用表示.解: (四)、课堂小结:(1)平面向量的分解定理. 对分解定理的理解:基底为两个不平行向量,向量的任意性,实数对的存在性和唯一性;(2)从基的角度认识几何图形。(五)、作业布置练习册P37 A组3,4 ,5 B组2,3
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!