2019-2020年高中数学《数列的概念》教案14 北师大版必修5.doc

上传人:tian****1990 文档编号:2600252 上传时间:2019-11-28 格式:DOC 页数:7 大小:414.50KB
返回 下载 相关 举报
2019-2020年高中数学《数列的概念》教案14 北师大版必修5.doc_第1页
第1页 / 共7页
2019-2020年高中数学《数列的概念》教案14 北师大版必修5.doc_第2页
第2页 / 共7页
2019-2020年高中数学《数列的概念》教案14 北师大版必修5.doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
2019-2020年高中数学数列的概念教案14 北师大版必修5教学目的:理解数列及其有关概念,了解数列和函数之间的关系.了解数列的通项公式,并会用通项公式写出数列的任意一项对于比较简单的数列,会根据其前几项写出它的个通项公式教学重点:数列及其有关概念,通项公式及其应用,前n 项和与an的关系教学难点:根据一些数列的前几项抽象、归纳数列的通项公式授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 本节主要介绍数列的概念、分类,以及给出数列的两种方法关于数列的概念,先给出了一个描述性定义,尔后又在此基础上,给出了一个在映射、函数观点下的定义,指出:“从映射、函数的观点看,数列可以看作是一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值”这样就可以将数列与函数联系起来,不仅可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列关于给出数列的两种方法,其中数列的通项公式,教材已明确指出它就是相应函数的解析式点破了这一点,数列与函数的内在联系揭示得就更加清楚此外,正如并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数) 教学过程:一、复习引入:1函数的定义如果A、B都是非空擞 集,那么A到B的映射就叫做A到B的函数,记作:,其中2在学习第二章函数的基础上,今天我们来学习第三章数列的有关知识,首先我们来看一些例子:4,5,6,7,8,9,10 1,. 1,0.1,0.01,0.001,0.0001,. 1,1.4,1.41,1.414,. -1,1,-1,1,-1,1,. 2,2,2,2,2,. 观察这些例子,看它们有何共同特点?(启发学生发现数列定义)上述例子的共同特点是:均是一列数;有一定次序. 从而引出数列及有关定义 二、讲解新课: 数列的定义:按一定次序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,第n 项,.例如,上述例子均是数列,其中中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.数列的一般形式:,或简记为,其中是数列的第n项结合上述例子,帮助学生理解数列及项的定义. 中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列,第一项与这一项的序号有这样的对应关系:项 序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3代替公式中的n,就可以求出该数列相应的各项结合上述其他例子,练习找其对应关系如:数列:=n+3(1n7);数列:1);数列:(n1) 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:并不是所有数列都能写出其通项公式,如上述数列;一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,它的通项公式可以是,也可以是.数列通项公式的作用:求数列中任意一项;检验某数是否是该数列中的一项.从映射、函数的观点来看,数列也可以看作是一个定义域为正整数集N*(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时对应的一列函数值,数列的通项公式就是相应函数的解析式.对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式画出其对应图象,下面同学们练习画数列,的图象,并总结其特点.在画图时,为方便起见,直角坐标系两条坐标轴上的单位长度可以不同. 数列、的图象分别如图1,图2所示.5数列的图像都是一群孤立的点.6数列有三种表示形式:列举法,通项公式法和图象法.7 有穷数列:项数有限的数列.例如,数列是有穷数列.8无穷数列:项数无限的数列. 例如,数列、都是无穷数列.三、讲解范例:例1 根据下面数列的通项公式,写出前5项:(1)分析:由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项解:(1) (2) 例2写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7; (2)(3)-,-,. 解:(1)项1=21-1 3=22-1 5=23-1 7=24-1 序号 1 2 3 4即这个数列的前4项都是序号的2倍减去1,它的一个通项公式是: ;(2)序号:1 2 3 4 项分母:2=1+1 3=2+1 4=3+1 5=4+1 项分子: 22-1 32-1 42-1 52-1即这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,它的一个通项公式是: ; (3)序号 这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是: 四、课堂练习:课本P112练习:14.学生板演1,2;教师提问评析3,4.答案:1,4,9,16,25;10,20,30,40,50;5,-5,5,-5,5;3/2,1,7/10,9/17,11/26.a7=1/343,a10=1/1000;a7=63,a10=120;a7=1/7,a10=-1/10;a7=-125,a10=-1021.=2n;=1/5n;=(-1)n/2n;=(1/n)-1/(n+1).8,64,=2n;1,36,=n2;-1/3,-1/7,=(-1)n/n;,an=. 五、小结 本节课学习了以下内容:数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式六、课后作业:课本P114习题3.1:1,2.答案: =3n; =-2(n-1); =(n+1)/n;=(-1)n/2n; =1/n2; =(-1)n+1 . a10=110,a31=992,a48=2352;求n(n+1)=420的正整数解得n=20.补充作业:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,; (2) , , , , , ; (3) 0, 1, 0, 1, 0, 1,; (4) 1, 3, 3, 5, 5, 7, 7, 9, 9, ;(5) 2, 6, 12, 20, 30, 42,. 解:(1) ; (2) ; (3) ; (4) 将数列变形为10, 21, 30, 41, 50, 61, 70, 81, , n;(5) 将数列变形为12, 23, 34, 45, 56,, (1)n(n1).七、板书设计(略)八、课后记: 课 题:数列的概念(二)教学目的:1了解数列的递推公式,明确递推公式与通项公式的异同;2会根据数列的递推公式写出数列的前几项;3理解数列的前n项和与的关系;4会由数列的前n项和公式求出其通项公式.教学重点:根据数列的递推公式写出数列的前几项教学难点:理解递推公式与通项公式的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析: 由于并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展。递推是数学里的一个非常重要的概念和方法。在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式。但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担。考虑到学生是在高一学习,我们必须牢牢把握教学要求,只要能初步体会一下用递推方法给出数列的思想,能根据递推公式写出一个数列的前几项就行了。教学过程:一、复习引入:上节学习知识点如下 数列的定义:按一定次序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,第n 项,.数列的一般形式:,或简记为,其中是数列的第n项 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.5数列的图像都是一群孤立的点.6数列有三种表示形式:列举法,通项公式法和图象法.7 有穷数列:项数有限的数列.例如,数列是有穷数列.8 无穷数列:项数无限的数列. 二、讲解新课: 知识都来源于实践,最后还要应用于生活。用其来解决一些实际问题 观察钢管堆放示意图,寻其规律,建立数学模型 模型一:自上而下: 第1层钢管数为4;即:141+3 第2层钢管数为5;即:252+3 第3层钢管数为6;即:363+3 第4层钢管数为7;即:474+3 第5层钢管数为8;即:585+3 第6层钢管数为9;即:696+3 第7层钢管数为10;即:7107+3若用表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且n7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数。这会给我们的统计与计算带来很多方便。让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。即;依此类推:(2n7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。定义:1递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公 式就叫做这个数列的递推公式。说明:递推公式也是给出数列的一种方法。如下数字排列的一个数列:3,5,8,13,21,34,55,89递推公式为:2数列的前n项和:数列中,称为数列的前n项和,记为. 表示前1项之和:= 表示前2项之和:=表示前n-1项之和:=表示前n项之和:=.当n1时才有意义;当n-11即n2时才有意义.3与之间的关系:由的定义可知,当n=1时,=;当n2时,=-,即=.说明:数列的前n项和公式也是给出数列的一种方法.三、例题讲解例1已知数列的第1项是1,以后的各项由公式给出,写出这个数列的前5项。分析:题中已给出的第1项即,递推公式:解:据题意可知: 例2已知数列中,3),试写出数列的前4项解:由已知得 例3已知, 写出前5项,并猜想 法一: ,观察可得 法二:由 即 例4 已知数列的前n项和,求数列的通项公式: =n+2n; =n-2n-1.解:当n2时,=-=(n+2n)-(n-1)+2(n-1)=2n+1;当n=1时,=1+21=3;经检验,当n=1时,2n+1=21+1=3,=2n+1为所求.当n2时,=-=(n-2n-1)-(n-1)+2(n-1)-1=2n-3;当n=1时,=1-21-1=-2;经检验,当n=1时,2n-3=21-3=-1-2,=为所求.四、练习:1根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式(1) 0, (2n1) (nN);(2) 1, (nN);(3) 3, 32 (nN). 解:(1) 0, 1, 4, 9, 16, (n1);(2) 1, , , ;(3) 31+2, 71+2, 191+2, 551+2, 1631+2, 123; 2 已知下列各数列的前n项和的公式,求的通项公式。(1) 2n3n; (2) 2. 解:(1) 1, =-2n3n2(n1)3(n1)4n5, 又符合415, 4n5;(2) 1, =-2(2)2, 五、小结 本节课学习了以下内容:1递推公式及其用法;2通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系. 3的定义及与之间的关系六、课后作业:1根据各个数列的首项和递推公式,写出它的前五项=1, =+(n2)解:由=1, =+(n2),得=1, =+=2, =+,=+,=+2已知=an+bn+c,求数列的通项公式。答案:=七、板书设计(略)八、课后记:
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!