2019-2020年高中数学《指数函数及其性质》教案10 新人教A版必修1.doc

上传人:tian****1990 文档编号:2600204 上传时间:2019-11-28 格式:DOC 页数:7 大小:114.50KB
返回 下载 相关 举报
2019-2020年高中数学《指数函数及其性质》教案10 新人教A版必修1.doc_第1页
第1页 / 共7页
2019-2020年高中数学《指数函数及其性质》教案10 新人教A版必修1.doc_第2页
第2页 / 共7页
2019-2020年高中数学《指数函数及其性质》教案10 新人教A版必修1.doc_第3页
第3页 / 共7页
点击查看更多>>
资源描述
2019-2020年高中数学指数函数及其性质教案10 新人教A版必修1(一)教学目标1知识与技能:(1)理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.(2)体会具体到一般数学讨论方式及数形结合的思想;2过程与方法:展示函数图象,让学生通过观察,进而研究指数函数的性质.3情感、态度与价值观(1)让学生了解数学来自生活,数学又服务于生活的哲理.(2)培养学生观察问题,分析问题的能力.(二)教学重点、难点1教学重点:指数函数的概念和性质及其应用.2教学难点:指数函数性质的归纳,概括及其应用.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,利用多媒体教学,使学生通过观察图象,总结出指数函数的性质,调动学生参与课堂教学的主动性和积极性从而培养学生的观察能力,概括能力.(四)教学过程教学环节教学内容师生互动设计意图复习引入复习指数函数的概念和图象.1.指数函数的定义一般地,函数(0且1)叫做指数函数,其中是自变量,函数的定义域为R.2.指数函数的图象问题:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.生:复习回顾师:总结完善 复习旧知,为新课作铺垫.形成概念图象特征101向轴正负方向无限延伸图象关于原点和轴不对称函数图象都在轴上方函数图象都过定点(0,1)自左向右,图象逐渐上升自左向右,图象逐渐下降在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于1师:引导学生观察指数函数的图象,归纳出图象的特征.生:从渐进线、对称轴、特殊点、图象的升降等方面观察指数函数的图象,归纳出图象的特征.师:帮助学生完善.通过分析图象,得到图象特征,为进一步 得到指数函数的性质作准备.概念深化函数性质101函数的定义域为R非奇非偶函数函数的值域为R+=1增函数减函数0,10,10,10,1问题:指数函数(0且1),当底数越大时,函数图象间有什么样的关系.生:从定义域、值域、定点、单调性、范围等方面研究指数函数的性质.师:帮助学生完善.师:画出几个提出问题.生:画出几个底数不同的指数函数图象,得到指数函数(0且1),当底数越大时,在第一象限的函数图象越高.(底大图高)获得指数函数的性质.明确底数是确定指数函数的要素.应用举例例1 求下列函数的定义域、值域(1)(2)课堂练习(P64 2)例2(P62例7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )与( 3 ) 1.70.3 与 0.93.1课堂练习:1.已知按大小顺序排列;2. 比较(0且0).例3(P63例8)截止到xx年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?例1分析:此题要利用指数函数的定义域、值域,并结合指数函数的图象.解:(1)由得所以函数定义域为.由得,所以函数值域为.(2)由得所以函数定义域为.由得,所以函数值域为.例2解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .解法2:用计算器直接计算: 所以,解法3:由函数的单调性考虑因为指数函数在R上是增函数,且2.53,所以,仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .练习答案1. ;2. 当时,则.当时,则.分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:xx年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿经过年 人口约为13(1+1%)亿经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则当=20时,答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,0且1)的函数称为指数型函数 .掌握指数函数的应用.归纳总结本节课研究了指数函数性质及其应用,关键是要记住1或01时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a0且1). 学生先自回顾反思,教师点评完善形成知识体系.课后作业作业:2.1 第五课时 习案学生独立完成巩固新知提升能力备选例题例1 求下列函数的定义域与值域(1);(2);(3);【分析】由于指数函数且的定义域是,所以函数(且)与函数的定义域相同.利用指数函数的单调性求值域.【解析】(1)令得 定义域为且.,的值域为且.(2)定义域为.0,故的值域为.(3)定义域为.且.故的值域为.【小结】求与指数函数有关的函数的值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.例2用函数单调性定义证明a1时,y = ax是增函数.【解析】设x1,x2R且x1x2,并令x2 = x1 + h (h0,hR),则有,a1,h0,即故y = ax (a1)为R上的增函数,同理可证0a1时,y = ax是R上的减函数.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!