2019年高中数学 第一章 解三角形 1.2 应用举例 第3课时 三角形中的几何计算学业分层测评 新人教A版必修5.doc

上传人:tia****nde 文档编号:2458494 上传时间:2019-11-25 格式:DOC 页数:5 大小:37KB
返回 下载 相关 举报
2019年高中数学 第一章 解三角形 1.2 应用举例 第3课时 三角形中的几何计算学业分层测评 新人教A版必修5.doc_第1页
第1页 / 共5页
2019年高中数学 第一章 解三角形 1.2 应用举例 第3课时 三角形中的几何计算学业分层测评 新人教A版必修5.doc_第2页
第2页 / 共5页
2019年高中数学 第一章 解三角形 1.2 应用举例 第3课时 三角形中的几何计算学业分层测评 新人教A版必修5.doc_第3页
第3页 / 共5页
点击查看更多>>
资源描述
2019年高中数学 第一章 解三角形 1.2 应用举例 第3课时 三角形中的几何计算学业分层测评 新人教A版必修5一、选择题1已知方程x2sin A2xsin Bsin C0有重根,则ABC的三边a,b,c的关系满足()AbacBb2acCabcDcab【解析】由方程有重根,4sin2B4sin Asin C0,即sin2Bsin Asin C,b2ac.【答案】B2在ABC中,A60,b1,SABC,则角A的对边的长为()A.B. C.D.【解析】SABCbcsin A1csin 60,c4.由余弦定理a2b2c22bccos 6011621413,a.【答案】D3在ABC中,a1,B45,SABC2,则此三角形的外接圆的半径R()A.B1 C2D.【解析】SABCacsin Bc2,c4.b2a2c22accos B132825,b5,R.【答案】D4在ABC中,AC,BC2,B60,则BC边上的高等于() A.B.C.D.【解析】在ABC中,由余弦定理可知:AC2AB2BC22ABBCcos B,即7AB2422AB.整理得AB22AB30,解得AB1(舍去)或AB3.故BC边上的高ADABsin B3sin 60.【答案】B5设ABC的内角A,B,C所对的边长分别为a,b,c,若三边的长为连续的三个正整数,且ABC,3b20acos A,则sin Asin Bsin C为()A432B567C543D654【解析】由题意知:ab1,cb1,所以3b20acos A20(b1)20(b1),整理得7b227b400,解之得:b5(负值舍去),可知a6,c4.结合正弦定理可知sin Asin Bsin C654.【答案】D二、填空题6在ABC中,B60,AB1,BC4,则BC边上的中线AD的长为_【解析】画出三角形(略)知AD2AB2BD22ABBDcos 603,AD.【答案】7在ABC中,若A60,b16,此三角形的面积S220,则a的值为_【解析】由bcsin A220得c55,又a2b2c22bccos A2 401,所以a49.【答案】498在ABC中,B120,b7,c5,则ABC的面积为_. 【解析】由余弦定理得b2a2c22accos B,即49a22525acos 120,整理得a25a240,解得a3或a8(舍),SABCacsin B35sin 120.【答案】三、解答题9已知ABC的三内角满足cos(AB)cos(AB)15sin2C,求证:a2b25c2. 【证明】由已知得cos2Acos2Bsin2Asin2B15sin2C,(1sin2A)(1sin2B)sin2Asin2B15sin2C,1sin2Asin2B15sin2C,sin2Asin2B5sin2C.由正弦定理得,所以2252,即a2b25c2.10四边形ABCD的内角A与C互补,AB1,BC3,CDDA2.(1)求C和BD;(2)求四边形ABCD的面积【解】(1)由题设及余弦定理得BD2BC2CD22BCCDcos C1312cos C,BD2AB2DA22ABDAcos A54cos C由,得cos C,故C60,BD.(2)四边形ABCD的面积SABDAsin ABCCDsin Csin 602.能力提升1已知锐角ABC中,|4,|1,ABC的面积为,则的值为()A2B2 C4D4【解析】由题意SABC|sin A,得sin A,又ABC为锐角三角形,cos A,|cos A2.【答案】A2在ABC中,内角A,B,C的对边分别为a,b,c.若asin Bcos Ccsin Bcos Ab,且ab,则B()A.B.C.D.【解析】由正弦定理可得sin Asin Bcos Csin Csin Bcos Asin B,又因为sin B0,所以sin Acos Csin Ccos A,所以sin(AC)sin B.因为ab,所以B.【答案】A3在ABC中,内角A,B,C所对的边分别为a,b,c.已知ABC的面积为3,bc2,cos A,则a的值为_【解析】在ABC中,由cos A可得sin A,所以有解得【答案】84ABC的内角A,B,C所对的边分别为a,b,c.向量m(a,b)与n(cos A,sin B)平行(1)求A;(2)若a,b2,求ABC的面积【解】(1)因为mn,所以asin Bbcos A0,由正弦定理,得sin Asin Bsin Bcos A0,又sin B0,从而tan A.由于0A0,所以c3.故ABC的面积为bcsin A.法二:由正弦定理,得,从而sin B.又由ab,知AB,所以cos B.故sin Csin(AB)sinsin Bcos cos Bsin .所以ABC的面积为absin C.
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 高中资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!