高考数学一轮复习 9-2 两直线的位置关系课件 新人教A版.ppt

上传人:sh****n 文档编号:2145098 上传时间:2019-11-16 格式:PPT 页数:34 大小:1.51MB
返回 下载 相关 举报
高考数学一轮复习 9-2 两直线的位置关系课件 新人教A版.ppt_第1页
第1页 / 共34页
高考数学一轮复习 9-2 两直线的位置关系课件 新人教A版.ppt_第2页
第2页 / 共34页
高考数学一轮复习 9-2 两直线的位置关系课件 新人教A版.ppt_第3页
第3页 / 共34页
点击查看更多>>
资源描述
最新考纲 1.能根据两条直线的斜率判定这两条直线平行或 垂直;2.能用解方程组的方法求两条相交直线的交点坐标; 3.掌握两点间的距离公式、点到直线的距离公式,会求两条 平行直线间的距离.,第2讲 两直线的位置关系,1两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1l2_特别地,当直线l1,l2的斜率都不存在时,l1与l2_ (2)两条直线垂直 如果两条直线l1,l2斜率都存在,设为k1,k2,则l1l2_,当一条直线斜率为零,另一条直线斜率不存在时,两条直线_,知 识 梳 理,k1k2,平行,k1k21,垂直,2两直线相交 相交方程组有_,交点坐标就是方程组的解; 平行方程组_; 重合方程组有_,唯一解,无解,无数个解,3距离公式 (1)两点间的距离公式 平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|_ 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|_,(2)点到直线的距离公式 平面上任意一点P0(x0,y0)到直线l:AxByC0的距离d_ (3)两条平行线间的距离公式 一般地,两条平行直线l1:AxByC10,l2:Ax ByC20间的距离d_,1判断正误(在括号内打“”或“”) 精彩PPT展示 (1)当直线l1和l2的斜率都存在时,一定有k1k2l1l2.( ) (2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于1. ( ) (3)已知直线l1:A1xB1yC10,l2:A2xB2yC20(A1,B1,C1,A2,B2,C2为常数),若直线l1l2,则A1A2B1B20. ( ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离 ( ),诊 断 自 测,2过点(1,0)且与直线x2y20平行的直线方程是 ( ) Ax2y10 Bx2y10 C2xy20 Dx2y10 解析 设所求直线方程为x2yc0,将(1,0)代入得c1.所求直线方程为x2y10. 答案 A,3(2014福建卷)已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是 ( ) Axy20 Bxy20 Cxy30 Dxy30 解析 已知圆的圆心为(0,3),直线xy10的斜率为1,则所求直线的斜率为1,所以所求直线的方程为yx3,即xy30.故选D. 答案 D,4直线2x2y10,xy20之间的距离是_,5(人教A必修2P114A4改编)若直线(3a2)x(14a)y80与(5a2)x(a4)y70垂直,则a_ 解析 由两直线垂直的充要条件,得(3a2)(5a2)(14a)(a4)0, 解得a0或a1. 答案 0或1,考点一 两直线的平行与垂直 【例1】 已知直线l1:ax2y60和直线l2:x(a1)ya210. (1)试判断l1与l2是否平行; (2)当l1l2时,求a的值 解 (1)法一 当a1时, l1:x2y60, l2:x0,l1不平行于l2; 当a0时,l1:y3, l2:xy10,l1不平行于l2;,当a1且a0时, 综上可知,a1时,l1l2. 法二 由A1B2A2B10, 得a(a1)120, 由A1C2A2C10,得a(a21)160,,故当a1时,l1l2. (2)法一 当a1时,l1:x2y60,l2:x0,l1与l2不垂直,故a1不成立; 当a0时,l1:y3,l2:xy10,l1不垂直于l2; 当a1且a0时,,规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论,【训练1】 已知过点A(2,m)和点B(m,4)的直线为l1,直线2xy10为l2,直线xny10为l3.若l1l2,l2l3,则实数mn的值为 ( ) A10 B2 C0 D8 答案 A,考点二 两条直线的交点与点到直线的距离 【例2】 直线l经过点P(2,5)且与点A(3,2)和点B(1,6)的距离之比为12,求直线l的方程 解 当直线l与x轴垂直时,此时直线l的方程为x2,点A到直线l的距离为d11,点B到直线l的距离为d23,不符合题意,故直线l的斜率必存在 直线l过点P(2,5), 设直线l的方程为y5k(x2), 即kxy2k50.,k218k170,k11,k217. 所求直线方程为xy30和17xy290. 规律方法 利用距离公式应注意:(1)点P(x0,y0)到直线xa的距离d|x0a|,到直线yb的距离d|y0b|;(2)两平行线间的距离公式要把两直线方程中x,y的系数化为相等,(2)直线l过点P(1,2)且到点A(2,3)和点B(4,5)的距离相等,则直线l的方程为_,两直线的交点在第一象限, 两直线的交点必在线段AB上(不包括端点), 动直线的斜率k需满足kPAkkPB.,即x3y50. 当直线l的斜率不存在时,直线l的方程为x1,也符合题意 当l过AB中点时,AB的中点为(1,4) 直线l的方程为x1. 故所求直线l的方程为x3y50或x1.,考点三 对称问题 【例3】 已知直线l:2x3y10,点A(1,2)求: (1)点A关于直线l的对称点A的坐标; (2)直线m:3x2y60关于直线l的对称直线m的方程; (3)直线l关于点A(1,2)对称的直线l的方程,(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m上 设对称点为M(a,b),,(3)法一 在l:2x3y10上任取两点,如M(1,1),N(4,3) 则M,N关于点A的对称点M,N均在直线l上 易知M(3,5),N(6,7),由两点式可得l的方程为2x3y90. 法二 设P(x,y)为l上任意一点, 则P(x,y)关于点A(1,2)的对称点为 P(2x,4y), P在直线l上,2(2x)3(4y)10, 即2x3y90.,规律方法 (1)点关于点的对称:求点P关于点M(a,b)的对称点Q的问题,主要依据M是线段PQ的中点,即xPxQ2a,yPyQ2b. (2)直线关于点的对称:求直线l关于点M(m,n)的对称直线l的问题,主要依据l上的任一点T(x,y)关于M(m,n)的对称点T(2mx,2ny)必在l上 (3)点关于直线的对称:求已知点A(m,n)关于已知直线l:ykxb的对称点A(x0,y0)的坐标,一般方法是依据l是线段AA的垂直平分线,列出关于x0,y0的方程组,由“垂直”得一方程,由“平分”得一方程 (4)直线关于直线的对称:此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行,【训练3】 光线沿直线l1:x2y50射入,遇直线l:3x2y70后反射,求反射光线所在的直线方程 反射点M的坐标为(1,2) 又取直线x2y50上一点P(5,0),设P关于直线l的对称点P(x0,y0),,微型专题 直线系方程的灵活应用 直线系指具有某一共同性质的直线的集合,它有多种不同的情况,其中以过两条直线交点的直线系为主利用直线系方程可以降低运算难度,使解题的过程更加简捷,因此在高考中这类问题也可能会成为考查的重点,【例4】 已知直线l与点A(3,3)和B(5,2)的距离相等,且过两直线l1:3xy10和l2:xy30的交点,求直线l的方程 点拨 不需要解两直线l1与l2的交点,可设直线l为:3xy1(xy3)0,再分两种情况分别求解 解 根据条件可设直线l的方程为3xy1(xy3)0,即(3)x(1)y310;直线l与点A(3,3)和B(5,2)的距离相等可分为两种情况:,此时直线l的方程为x6y110. 综上,可知所求直线l的方程为x2y50或x6y110.,点评 一般情况下,若两条直线l1:A1xB1yC10,l2:A2xB2yC20有交点,则过l1与l2的交点的直线系方程可设为A1xB1yC1(A2xB2yC2)0(不含l2),利用这一结论可以避免求交点时解方程组带来的麻烦.,思想方法 1两直线的位置关系要考虑平行、垂直和重合对于斜率都存在且不重合的两条直线l1,l2,l1l2k1k2;l1l2k1k21. 2对称问题一般是将线与线的对称转化为点与点的对称利用坐标转移法 3光线的反射问题具有入射角等于反射角的特点,这样就有两种对称关系,一是入射光线与反射光线关于过反射点且与反射轴垂直的直线(法线)对称,二是入射光线与反射光线所在直线关于反射轴对称,易错防范 1在判断两条直线的位置关系时,首先应分析直线的斜率是否存在若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑 2使用点到直线的距离公式前必须将直线方程化为一般式,同时此公式对直线与坐标轴垂直或平行的情况也适用;使用两平行线间的距离公式时一定要注意先把两直线方程中的x,y的系数化成相等,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!