高三数学考前专题辅导.ppt

上传人:za****8 文档编号:12919306 上传时间:2020-06-02 格式:PPT 页数:50 大小:356KB
返回 下载 相关 举报
高三数学考前专题辅导.ppt_第1页
第1页 / 共50页
高三数学考前专题辅导.ppt_第2页
第2页 / 共50页
高三数学考前专题辅导.ppt_第3页
第3页 / 共50页
点击查看更多>>
资源描述
高三数学考前辅导专题讲座,桐城市第十中学叶青松,实力是获取高分的基础,策略方法技巧是获取高分的关键。对于两个实力相当的同学,在考试中某些解题策略技巧使用的好坏,往往会导致两人最后的成绩有很大的差距。,一、选择题解题策略,数学选择题具有概栝性强,知识覆盖面广,小巧灵活,有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。,解选择题的基本要求是熟练准确,灵活快速,方法得当,出奇制胜。解题一般有三种思路:一是从题干出发考虑,探求结果;二是题干和选择支联合考虑;三是从选择支出发探求满足题干的条件。选择题属易题(个别为中档题),解题基本原则是:“小题不可大做”。,1、直接法:,涉及数学定理、定义、法则、公式的问题,常从题设条件出发,通过运算或推理,直接求得结论;再与选择支对照。,例:已知函数y=f(x)存在反函数y=g(x),若f(3)=1,则函数y=g(x1)的图像在下列各点中必经过()A(2,3)B(0,3)C(2,1)D(4,1),解:由题意函数y=f(x)图像过点(3,1),它的反函数y=g(x)的图像经过点(1,3),由此可得函数y=g(x1)的图像经过点(0,3),故选B。,2、筛选法(排除法、淘汰法),充分运用选择题中单选的特征,通过分析、推理、计算、判断,逐一排除错误支,得到正确支的解法。,解:因x为三角形中的最小内角,故x(0,),由此可得y=sinx+cosx1,排除错误支B,C,D,应选A。,3、图象法(数形结合),通过数形结合的思维过程,借于图形直观,迅速做出选择的方法。,例.已知、都是第二象限角,且coscos,则()AsinCtantanDcotcos找出、的终边位置关系,再作出判断,得B。,4、特殊法,从题干或选择支出发,通过选取特殊值代入、将问题特殊化,达到肯定一支或否定三支的目的,是“小题小作”的策略。,特殊值:例.一等差数列前n项和为48,前2n项和为60,则它的前3n项和为()A24B84C72D36,解:本题结论中不含n,正确性与n无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d=-24,所以前3n项和为36,选D。,特殊函数:例.定义在R上的奇函数f(x)为减函数,设a+b0,给出下列不等式:f(a)f(a)0f(b)f(b)0f(a)+f(b)f(a)+f(b)f(a)+f(b)f(a)+f(b)其中正确的不等式序号是()ABCD,解:取f(x)=-x,逐项检查可知正确。因此选B。,特殊数列:例.如果等比数列an的首项是正数,公比大于1,那么数列logan(),A是递增的等比数列B是递减的等比数列C是递增的等差数列D是递减的等差数列,解:取an=3n,易知选D。,解:考察PQ与y轴垂直时有p=q=,代如即可得C.,解:在f(x)=+2(x0)中可令x=0,得y=2;令x=4,得y=4,则特殊点(2,0)及(4,4)都在反函数f1(x)图像上,观察得A、C。又由反函数f1(x)的定义域知选C。,5、估算法,通过估算或列表,把复杂问题化为简单问题,求出答案的近解后再进行判断的方法。,6、推理分析法:,特征分析法:根据题目所提供信息,如数值特征、结构特征、位置特征等,进行快速推理,作出判断的方法.,例:设a,b是满足ab|a-b|B.|a+b|a-b|C.|a-b|a|-|b|D.|a-b|a|+|b|,解:因A,B是一对矛盾命题,故必有一真,从而排除错误支C,D。又由ab0,可令a=1,b=1,代入知B为真。,7.验证法:,将各选择支逐个代入题干中进行验证,或适当选取特殊值进行检验,或采取其他验证手段,以判断选择支正误的方法.,例.若不等式0x2ax+a1的解集是单元素集,则a的值为()(A)0(B)2(C)4(D)6,解:选择支逐个代入题干中验证得a=2选B.,二、填空题解题策略,同选择题一样,填空题也属小题,其解题的基本原则是“小题不能大做”。解题基本策略是:巧做.解题基本方法一般有:直接求解法、图像法、构造法和特殊化法(特殊值、特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型),1、直接求解法,直接从题设条件出发,用定义、性质、定理、公式等,经变形、推理、计算、判断等得到正确结论.这是解填空题常用的基本方法,使用时要善于“透过现象抓本质”。力求灵活、简捷。,例.数列an、bn都是等差数列,a1=0、b1=-4,用Sk、Sk分别表示an、bn的前k项和(k是正整数),若Sk+Sk=0,则ak+bk=_。,2.特殊化求解法,当填空题结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。如:上例中取k=2(k1?),于是a1+a2+b1+b2=0,故a2+b2=4,即ak+bk=4。,例.已知SA,SB,SC两两所成角均为60,则平面SAB与平面SAC所成的二面角为。,解:取SA=SB=SC,将问题置于正四面体中研究,不难得平面SAB与平面SAC所成二面角为arccos,3.数形结合法:,根据题设条件的几何意义,画出辅助图形,借助图形的直观性,迅速作出判断的方法.文氏图、三角函数线、函数图像及方程的曲线,空间图形等,都是常用的图形.,4、构造法:,在解题中有时需根据题目的具体情况,设计新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。,例:点P在正方形ABCD所在的平面外,PDABCD,PD=AD,则PA与BD所成角的度数为。,解:根据题意可将上图补形成一正方体,在正方体中易求得为60,注:解选择填空题时可优先作图,优先估算,优先考虑特例,三、解答题解题策略,8、优先挖掘隐含,优先作图观察分析,1、从条件入手分析条件,化繁为简,注重隐含条件的挖掘.,2、从结论入手-执果索因,搭好联系条件的桥梁.,3、回到定义和图形中来.,4、构造辅助问题(函数、方程、图形),换一个角度去思考.,5、通过横向沟通和转化,将各数学分支中不同的知识点串联起来.,6、培养整体意识,把握整体结构。,7、注意承上启下,层层递进,充分利用已得出的结论,10、正难则反,执果索因,逆向思考:对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展。顺向推有困难就逆推,直接证有困难就反证。,9、立足特殊,发散一般:“以退求进”是一个重要的解题策略,对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决,11、解决探索性(开放性)问题的策略:探索性问题可以粗略地分为四种类型:条件追溯型、结论探索型、存在判断型和方法探究型。解探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。,12、解应用性问题的思路:审题尤为重要。审题需将那些与数学无关内容抛开,以数学的眼光捕捉信息,构建模型,同时要注意将图形、文字、表格等语言转变为数学语言。具体做法是:先全面理解题意和概念背景透过冗长叙述,抓重点词句,提出重点数据综合联系,提炼数量关系,依靠数学方法,建立数学模型(模型一般很简单).如此将应用问题化为纯数学问题.此外,求解过程和结果不能离开实际背景。,四、常用数学思想与方法,高考数学命题以能力立意为主。若能自觉、灵活地综合运用各种数学思想与方法于所要解决的问题中,则常能使问题迎刃而解。,(一)常用数学思想与方法,1、函数与方程的思想:函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式组),然后通过解方程或不等式(组)使问题获解,2、数形结合的思想:实质是抽象的数学语言与直观图形的结合,使抽象思维和形象思维在解题中交互运用。通过对图形的认识,使初看很难或很繁的问题变得容易和直观,它可以使代数问题几何化,几何问题代数化。,3、分类与整合的思想:在研究问题时,若我们不能用同一种方法去处理,就往往将这个问题恰当地划分成若干个部分的问题,在解决了这些若干个部分问题后,整个问题就得到了解决。确定分类的标准是分类法的关键。划分时,要注意既不重复,又不遗漏。,4、化归与转化的思想:就是把不熟悉、不规范、复杂的问题转化为熟悉、常规、简单的问题。转化有等价与非等价转化。等价转化要求转化过程中前因后果是充要的。非等价转化其过程是充分或必要的,要对结论进行必要的修正.(如无理方程化有理方程要求验根)转化能给人带来思维的闪光点,找到解题的突破口。,5、有限与无限的思想:将题目条件扩展到极限情况,采用极限思维,常给人一种豁然开朗的感觉。,6、特殊与一般的思想:参看选择、填空题的解法思想.,7、或然与必然的思想:用于概率和随机变量问题,(二)常用数学方法技巧,1.解析法2.待定系数法3.反证法4.消元降幂法5.数学归纳法6.配方法7.换元法8.图象法与观察法9.差(商)比法10.特值法11.判别式法与韦达定理12.均值不等式13.参数与分离参数法14.拆项法15.错位相减法16.迭加与连乘17.等积(面积、体积)法18.几何变换法:平移、旋转、对称19.活用定义20.分析法与综合法21.类比法22.因式分解法23.构造(配凑)法,五、考前策略,1.考前几天要调整好生物钟,保持最近习惯,保持良好的心理状态。,2.考前几天要做好知识方法整理、回忆;要浏览一下重要的概念、公式和定理;浏览一下近段时间的试卷和专题;以查漏补缺、树立信心、调整自己的心态。,3.考前几天晚上应早点睡,中午应体息好,以保证充足的睡眠和良好的精力。饮食以清爽、可口、易消化吸收为原则,注意早餐要吃丰盛些,但不能过于油腻.考试当天中午,应有良好的心理暗示如“我很放松,我感觉不错,今天数学我一定能超常发挥”等。,4.考试前一天要整理并放好考试用具。首先是准考证、身份证;其次是尺规、三角版、量角器、2B铅笔、填涂卡、0.5黑色水笔、橡皮等;再次是必要的如手绢、清凉油等。作图、作辅助线一定先用铅笔和尺子最后用黑色水笔,填涂用2B铅笔,答题用0.5黑色水笔。,5.提前半小时到达考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间调整大脑思绪,摒弃杂念,排除干扰,使大脑处于放松状态,同时创设数学情境,让大脑进入单一数学状态,提前进入“角色”。具体作法是:清点考试用具、把数学基本知识“过过电影”、看一眼难记易忘的结论、暗示重要知识和方法、提醒常见解题误区,进行针对性的自我安慰,减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。,六、临场答题策略、技巧,高考临场发挥显得尤为重要,正确运用数学高考临场解题策略,不仅可以预防各种心理造成的不合理丢分和计算失误、笔误,而且能运用科学的检索方法,建立神经联系,挖掘思维和知识潜能.,(一)放松精神,保持心态平衡的策略,1、进场见老师,问声好以消除对监考老师的敬畏感,获得一种和谐的亲近感。试卷到手,首先要按照考试要求,认真、准确、规范地填好准考证号码、姓名等相关内容。避免开考后遗忘。,2.“临战”前,保持心态平衡的方法有三种:转移注意法:避开监目光,把注意力转移到某一次你印象较深的数学评讲课上,或转移到对往日有趣事情的回忆中。自我安慰法:如“我经过的考试多了,没什么了不起”,“我今天心情不错,精神不错,一定考得不错.”等。抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,可帮助放松。,3.信心要充足,暗示靠自己。答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定,树立“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。,4.时常提醒自己作到“四心”:静心、信心、细心、专心;做到“内紧外松”。集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,益于积极思维。注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则走向反面与焦虑,抑制思维,所以又要放得开,要愉快清醒,做到“内紧外松”。,5.不要总想“捞满分”而要常想“多拣分,少丢分”。特别是对平时成绩中等的同学来说,卡在某一题上,一心想“捞满分”是大忌。,应该捞的分一定要捞,该放弃的敢于暂时放弃。如果有时间再攻暂时放弃的题。,(二)临场增分解题的技巧与策略,1、沉着应战,确保旗开得胜,以利振奋精神,良好的开端是成功的一半,从考试心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍试题,摸透题情,然后稳操一两个易题熟题(选择填空为主),让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,,2、立足中低档题目,力争高水平,答卷中要立足中下题目。中下题目通常占全卷80%,是试题的主要构成,考生得分的主要来源。学生拿下这些题目,实际上就是打了个胜仗,有了胜利在握的心理,对攻克高档题会更放得开。,3、“五先五后”,因人因卷制宜,在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“五先五后”的战术原则。,先易后难。就是先做简单题,再做综合题。应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。,先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措。应想到试题偏难对所有考生也难。通过这种暗示,确保情绪稳定。对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。,先同后异.是指先做同知识类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。,先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础。,先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。,4、一“慢”一“快”,相得益彰,解一个题,含两方面内容:方法的选择以及用所选方法准确完整地解决它.有些考生只知道考场上一味地要快,结果题意未清,条件未理解全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同.应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速解答。,5、确保运算准确,立足一次成功,要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。,6、讲求规范书写,力争既对又全,会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此谓心理学的“光环效应”。“书写要工整,卷面能得分”正是这个道理。,7、面对难题,讲究策略,分步得分,不要随便放弃一道题!如果是一道选择题,全然放弃,得零分,但只要做出选择,就有四分之一的把握得分。如果放弃的是解答题,又与高考数学解答题起点较低,的特点格格不入。,会做的题目要力求做对、做全、得满分,对于解答题中不能全面完成的难题如何分段得分?通常有两种方法。,缺步解答。对难题,确实啃不动时,明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如:把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且还可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成解题思路.,跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在适当位置补上。,8、重视复查环节,不争交头卷,试题全做完后要认真检查,检查试卷要求、检查答题思路、检查解题步骤、检查答题结果。要看是否有漏题,答题所写字母与图形是否一致,格式是否规范,字母、符号、数据是否抄错。对解题结果常用的检验策略有:回顾检验赋值检验逆代检验估算检验作图检验多解法检验极端检验。,预祝全体考生旗开得胜马到成功!,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!