数学分析3期末练习题三参考答案.doc

上传人:s****u 文档编号:12754724 上传时间:2020-05-22 格式:DOC 页数:18 大小:1.03MB
返回 下载 相关 举报
数学分析3期末练习题三参考答案.doc_第1页
第1页 / 共18页
数学分析3期末练习题三参考答案.doc_第2页
第2页 / 共18页
数学分析3期末练习题三参考答案.doc_第3页
第3页 / 共18页
点击查看更多>>
资源描述
10统计专业和数学专业数学分析(3)期末练习题三参考答案1. 试求极限 解 . 2. 试求极限 解 由 . 3. 试求极限解 由于 , 又 ,所以 , , 所以 . 4. 试讨论解 当点沿直线趋于原点时, . 当点沿抛物线线趋于原点时, . 因为二者不等,所以极限不存在. 5. 试求极限解 由 = .6. ,有连续的偏导数,求 解 令 则 7. 求解 由 . 8. 求抛物面 在点 处的切平面方程与法线方程。解 由于 ,在处 , 所以, 切平面方程为 . 即 法线方程为 . 9. 求在处的泰勒公式.解 由 . 得. 10. 求函数的极值.解 由于 解得驻点, 所以 是极小值点, 极小值为 11. 叙述隐函数的定义.答: 设,函数 对于方程, 若存在集合与,使得对于任何,恒有唯一确定的,使得满足方程 ,则称由方程确定了一个定义在上,值域含于的隐函数。一般可记为 且成立恒等式12. 叙述隐函数存在唯一性定理的内容.答: 若满足下列条件:(i)函数F在以为内点的某一区域上连续;(ii)(通常称为初始条件);(iii)在D内存在连续的偏导数;(iv)0,则在点的某邻域内,方程=0唯一地确定了一个定义在某区间内的函数(隐函数),使得1 ,时且;2 在内连续.13. 叙述隐函数可微性定理的内容.答: 若满足下列条件:(i)函数F在以为内点的某一区域上连续;(ii)(通常称为初始条件);(iii)在D内存在连续的偏导数;(iv)0,又设在D内还存在连续的偏导数,则由方程所确定的隐函数在在其定义域内有连续导函数,且14. 利用隐函数说明反函数的存在性及其导数.答: 设在的某邻域内有连续的导函数,且; 考虑方程由于, , 所以只要,就能满足隐函数定理的所有条件,这时方程能确定出在的某邻域内的连续可微隐函数,并称它为函数的反函数.反函数的导数是15. 解: 显然及在平面上任一点都连续,由隐函数定理知道,在使得的点附近,方程都能确定隐函数;所以,它的一阶与二阶导数如下:对方程求关于的导数(其中是的函数)并以3除之,得,或 (1)于是 (2)再对(1)式求导,得: 即 (3)把(2)式代入(3)式的右边,得再利用方程就得到 16. 解: 由于处处连续,根据隐函数定理18.3,在原点附近能惟一确定连续可微得隐函数,且可求得它得偏导数如下:17. 解: (1)令, 则有.由于均连续,且,故在点附近由上述方程能确定隐函数和.(2)当时, 由定理知;同理, 当时, 由定理知.于是求得并且有, .18. 解: 首先,即满足初始条件. 再求出F,G的所有一阶偏导数容易验算,在点处的所有六个雅可比行列式中只有因此,只有难以肯定能否作为以为自变量的隐函数. 除此之外,在的近旁任何两个变量都可作为以其余两个变量为自变量的隐函数.如果我们想求得的偏导数,只需对方程组分别关于求偏导数,得到 (1) (2)由(1)解出由(2)解出19. 解: 设,.(1) 关于的雅可比行列式是,当时, 在满足方程组的任何一点的一个邻域内, 由方程组可以唯一确定是的可微函数;(2) 关于的雅可比行列式是,当时, 在满足方程组的任何一点的一个邻域内, 由方程组可以唯一确定是的可微函数.20. 解: 设 ,. 它们在处的偏导数和雅可比行列式之值为: 和, , .所以曲线在处的切线方程为:,即法平面方程为 ,即.21. 解: 令, 则,故, 因此曲面在点处的法向量为,所求切平面方程为,即.法线方程为即22. 解: 这个问题实质上就是要求函数(空间点到原点的距离函数的平方)在条件及下的最大、最小值问题. 应用拉格朗日乘数法,令.对求一阶偏导数,并令它们都等于0,则有求得这方程组的解为与 (1)(1)就是拉格朗日函数的稳定点,且所求的条件极值点必在其中取得.由于所求问题存在最大值与最小值(因为函数在有界闭集上连续,从而必存在最大值与最小值),故由所求得的两个值,正是该椭圆到原点的最长距离与最短距离.23. 叙述含参量的正常积分定义.答: 用积分形式所定义的这两个函数 (1)与 , (2)通称为定义在上含参量的(正常)积分,或简称含参量积分.(1)式的意义如下:设是定义在矩形区域上的二元函数。当取上某定值时,函数则是定义在上以y为自变量的一元函数.倘若这时在可积,则其积分值是在上取值的函数,记它为,就有.(2)式的意义如下:一般地,设为定义在区域上的二元函数,其中为定义在上的连续函数,若对于上每一固定的值,作为的函数在闭区间上可积,则其积分值是在上取值的函数,记作时,就有 24. 叙述含参量的正常积分的连续性定理的内容.答: 设二元函数在区域上连续,其中为上的连续函数,则函数 (6)在上连续.25. 叙述含参量的无穷限反常积分定义.答: 设二元函数定义在无界区域上,若对于上每一固定的值,反常积分 (1)都收敛, 则它的值是在上取值的函数, 当记这个函数为时, 则有,称(1)式为定义在上的含参量的无穷限反常积分, 或简称含参量反常积分.26. 叙述含参量的无穷限反常积分的一致收敛性定义.答: 若含参量反常积分 与函数对任给的正数,总存在某一实数使得当时,对一切,都有 即 则称含参量反常积分 在上一致收敛于,或简单地说含参量积分 在上一致收敛.27. 叙述含参量的无穷限反常积分的一致收敛的柯西收敛准则.答: 含参量反常积分 在上一致收敛的充要条件是:对任给正数,总存在某一实数,使得当时,对一切,都有.28. 叙述含参量反常积分一致收敛的狄利克雷判别法.答: 设对一切实数Nc,含参量正常积分对参量在上一致有界,即存在正数M,对一切Nc及一切,都有对每一个,函数关于y是单调递减且当时,对参量一致地收敛于0. 则含参量反常积分在上一致收敛29. 叙述含参量反常积分一致收敛的阿贝尔判别法.答: 设在上一致收敛;对每一个,函数为的单调函数,且对参量,在上一致有界,则含参量反常积分在上一致收敛。30. 叙述含参量反常积分的可积性定理内容.答: 设在上连续,若在上一致收敛,则在上可积,且设在上连续.若关于在任何闭区间上一致收敛,关于在任何区间上一致收敛; 积分 (18)中有一个收敛, 则(18)中另一个积分也收敛,且31. 解: 因为所以 由于函数在上满足定理的条件,所以交换积分顺序得到32. 解: 因为,所以该积分是正常积分.交换积分次序, 得.在上面的内层积分中作变换,有,于是.解法二: 取为参量, 利用积分号下求导数的方法,有积分上式,可得由于,即有,于是有.33. 解: 因为,所以 (21)由于及反常积分收敛,根据魏尔斯特拉斯M判别法,含参量反常积分在上一致收敛.由于在上连续,根据定理19.11交换积分(21)的顺序,积分I的值不变.于是 在上述证明中,令,则有, (22)由阿贝耳判别法可得上述含参量反常积分在上一致收敛.于是由定理19.9,在上连续,且又由(22)式在上式中,令,则有.34. 解: 由于对任一实数成立及反常积分收敛,所以原积分在上收敛. 考察含参量反常积分, (24)由于对一切成立及反常积分收敛,根据魏尔斯特拉斯M判别法,含参量积分(24)在上一致收敛. 综合上述结果由定理19.10即得 于是有,.从而,又由原积分,所以,因此得到35. 解: 把含参数的反常积分.中的被积函数关于求偏导数, 可得,当时, 有,因此,由M判别法, 关于参量是一致收敛的,因此对可以在积分号下求导,即.因为,所以.于是.令,有.36.解:. 37.解: 直线段的参数方程是:, 于是, .38.解:原式 39.解: .40.解: 由于,因此,全微分的原函数是. 41.解:().画出积分区域 ().42.解:.43.解: (). 由,得.于是,故是抛物线.令,得.故与轴相交于.().令 ,则,故 .().44.解: .45.解:.46.解:因为,故,.于是 .47.解:S是分解为两部分:,.故 .48.解:原式= . 49.解:().画出积分区域 ().原式=.50.解:由Gauss公式,得,由广义球坐标变换 , ,得 18
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 考试试卷


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!