资源描述
理科第20周 立体几何中的向量方法核心知识1空间的角(1)异面直线所成的角如图,已知两条异面直线a、b,经过空间任一点O作直线aa,bb.则把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)(2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角直线垂直于平面,则它们所成的角是直角;直线和平面平行,或在平面内,则它们所成的角是0的角(3)二面角的平面角如图在二面角l的棱上任取一点O,以点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则AOB叫做二面角的平面角2空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2的夹角满足cos |cosm1,m2|.(2)设直线l的方向向量和平面的法向量分别为m,n,则直线l与平面的夹角满足sin |cosm,n|.(3)求二面角的大小()如图,AB、CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小,()如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足cos cosn1,n2或cosn1,n2自我测评1如图所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是()A平行 B相交 C异面垂直 D异面不垂直解析建立坐标系如图,设正方体的棱长为2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,t,2),(1,1t,2),(2,0,1),0,则直线NO、AM的位置关系是异面垂直答案C2如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a(1,0,1),b(0,1,1),那么,这条斜线与平面所成的角是_解析cosa,b,又a,b0,a,b60.3已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角的大小为_解析cosm,n,即m,n45,其补角为135,两平面所成的二面角为45或135.
展开阅读全文