十大数学公式

上传人:xia****ng 文档编号:96275125 上传时间:2022-05-25 格式:DOC 页数:4 大小:118.01KB
返回 下载 相关 举报
十大数学公式_第1页
第1页 / 共4页
十大数学公式_第2页
第2页 / 共4页
十大数学公式_第3页
第3页 / 共4页
点击查看更多>>
资源描述
1. 欧拉恒等式 这是一个非常著名的恒等式。它给出了3个看似随机的量之间的联系:、e和-1的平方根。许多人认为这是数学中最漂亮的公式。一个更一般的公式是e(ix) =cosx+isinx (ab表示a的b次方,下同)。当x=,cosx取值为-1,而isinx取值为0。由-1+1=0,我们得到了欧拉恒等式。2. 欧拉乘积公式 等式左边的符号是无穷求和,而右边的符号则是无穷乘积。这个公式也是欧拉首先发现的。它联系了出现在等式左边的自然数(如n=1,2,3,4,5等等)与出现在等式右边的素数(如p=2,3,5,7,11等等)。而且我们可以选取s为任意大于1的数,并保证等式成立。欧拉乘积公式的左边是黎曼函数最常见的一种表示形式。3. 高斯积分 函数e(-x)本身在积分中是很难对付的。可是当我们对它在整个实数轴上积分,也就是说从负 无穷到正无穷时,我们却得到了一个十分干净的答案。至于为什么曲线下面的面积是的平方根,这可不是一眼就能看出来的。由于这个公式代表了正态分布,它在统计中也十分重要。4. 连续统的基数 上面的公式说明了实数集的基数与自然数全体子集的基数相同。这首先是被集合论的建立者康托尔证明的。值得注意的是,这也说明了连续统是不可数,因为2N N。一个相关的假设是连续统假设。这个假设是说,在N和R之间不存在其它的基数。有趣的是,这个假设有一个奇怪的性质:它既不能被证明也不能被证伪。5. 阶乘函数的解析延拓 阶乘函数通常被定义为n!=n(n-1)(n-2)1。但是这个定义只对n是正整数时有效,而上面积分方程则对分数和小数也有效,而且还可以用于负数、复数等等同样的积分式中我们把n换成n-1就定义了伽马函数。6. 勾股定理 勾股定理恐怕是这个清单中最熟悉的公式了。它给出了直角三角形三边的联系,其中a和b是直角边长,而c是斜边长。这个公式还将三角形和正方形联系了起来。7. 斐波那契数列的通项 这里,注意到这个数字是黄金分割比例。很多人可能听说过斐波那契数列(0,1,1,2,3,5,8,13,21,34,55,数列中每一项是前两项的和),却很少人知道有一个公式能够计算出任意某一项斐波那契数:这就是上面我们给出的公式,公式里面F(n)代表第n个斐波那契数。也就是说,为了得到第100个斐波那契数,你不需要去计算前99个,而只需要把100代入公式。值得注意的是,即便在计算过程中出现了许多根号和除法,最后的答案总是一个精确的正整数。8. 巴塞尔问题 这个公式告诉我们,如果你取所有完全平方数并将它们的倒数和相加,你将会得到pi2/6。这是欧拉首先证明的。注意到这个式子只是在前面的第二个方程(欧拉乘积公式)中令s=2。后者是黎曼方程,因此我们可以说(2)的值是/6。9. 调和级数这个公式有点反直觉,因为它告诉我们,如果你把一些不断变小的数(最终趋向0)加起来,最后将会得到无穷。可是如果你是取它们的平方,和却是一个有限的值(答案是/6)。如果仔细观察调和级数,你会发现它正是(1)。10. 素数计数公式的显式表达 这个方程的重要性体现在:素数是那些除了1和它本身以外没有其它因子的数。小于100的素数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 。 由此可知,素数的出现没有显然的规律:对于一串连续正整数,有时候你会找到许多素数,有时候你会一个也找不到。找到很多或一个找不到似乎是完全随机的。很长时间以来,数学家都在尝试给出素数分布的规律。上面的公式正是不大于一个给定数素数个数的显式表达。以下是各个符号的意义:(x): 素数计数函数。它给出了不大于一个给定数的素数个数。例如,(6)=3,因为有3个素数不大于6:2,3,5。(n): 莫比乌斯函数。它依据n的质因数分解而取值为0, -1或1。Li(x): 对数积分函数。它被定义为函数1/lnt从0到x的积分。: 黎曼函数的任意非平凡零点。令人吃惊的是,整个公式的结果总是一个精确的正整数!这说明,给定一个实数,我们可以把它代入公式并得到不大于它的素数个数。存在着这样一个公式的事实说明,素数的分布存在某些规律,只是我们现在还不能理解罢了。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 中学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!