数控结构与加工毕业论文

上传人:无*** 文档编号:88737812 上传时间:2022-05-11 格式:DOC 页数:26 大小:121.50KB
返回 下载 相关 举报
数控结构与加工毕业论文_第1页
第1页 / 共26页
数控结构与加工毕业论文_第2页
第2页 / 共26页
数控结构与加工毕业论文_第3页
第3页 / 共26页
点击查看更多>>
资源描述
毕 业 论 文题 目 数控结构与加工 专 业 数控加工与维护工程 班 级 学 生 指导教师 西安工业大学函授部二 0 0 九 年摘 要数控机床是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。它的出现以及所带来的巨大效益引起世界各国科技界和工业界的普遍重视。随着数控机床已是衡量一个国家机械制造业技术改造的必由之路,是未来工厂自动化的基础。需要大批量能熟练掌握数控机床编程、操作、维修的人员和工程技术人员。但是我们装备制造业仍存在“六有六缺”的隐忧,即“有规模、缺实力,有数量、缺巨人,有速度、缺效益,有体系、缺原创,有单机、缺成套,有出口、缺档次。目前,振兴我国机械装备制造业的条件已经具备,时机也很有利。我们要以高度的使命感和责任感,采取更加有效的措施,克服发展中存在的问题,把我国从一个制造业大国建设成一个制造业强国,成为世界级制造业基地之一。我选择这个题目是因为此零件既包括了数控车床的又含有数控铣床的加工。用到了铣端面、铣凸台、钻通孔、扩孔、绞孔、攻螺纹。对我们学过的知识大致都进行了个概括总结。这份毕业设计主要分为5个方面:1.抄画零件图2.工艺分析3.切削用量选择4.工艺文件5.计算编程。零件图通过在AUTOCAD上用平面的形式表现出来,更加清楚零件结构形状。然后具体分析零件图由那些形状组成。数控加工工艺分析,通过对零件的工艺分析,可以深入全面地了解零件,及时地对零件结构和技术要求等作必要的修改,进而确定该零件是否适合在数控机床上加工,适合在哪台数控机床上加工,此零件我选择在加工中心上进行是因为加工中心具有自动换刀装置,在一次安装中,可以完成零件上平面的铣削,孔系的钻削、镗削、铰削、铣削及攻螺纹等多工位的加工。加工的部位可以在一个平面上,也可以在不同的平面上因此,既有平面又有孔系的零件是加工中心首选的加工对象,接着分析某台机床上应完成零件那些工序或那些工序的加工等。需要选择定位基准;零件的定位基准一方面要能保证零件经多次装夹后其加工表面之间相互位置的正确性,另一方面要满足加工中心工序集中的特点即一次安装尽可能完成零件上较多表面的加工。定位基准最好是表面已有的面或孔。再确定所有加工表面的加工方法和加工方案;选择刀具和切削用量。然后拟订加工方案确定所有工步的加工顺序,把相邻工步划为一个工序,即进行工序划分;先面后孔的加工顺序,因为平面尺寸轮廓较大,用平面定位比较稳定,而且孔的深度尺寸又是以平面为基准的,故应先加工平面后加工孔。最后再将需要的其他工序如普通加工工序插入,并衔接于数控加工工序序列之中,就得到了要求零件的数控加工工艺路线。切削用量经过查表和计算求得,然后在填入工艺文件里面。最后就是编程编程分手工编程和自动编程。这里采用MASTERCAM软件自动编程。整个设计就算是完成了。最后,让我们在数控机床上加工出该零件达到要求。数控技术的广泛应用给传统的制造业的生产方式,产品结构带来了深刻的变化。也给传统的机械,机电专业的人才带来新的机遇和挑战。通过本次毕业设计让我们毕业生更好的熟悉数控机床,确定加工工艺,学会分析零件,掌握数控编程。关键字:数控 机床结构 加工 程序 24目 录第一章 数控机床组成1.1 数控介质与输人、输出装置31.2 数控装置与伺服系统31.3 检测反馈系统41.4 机床本体4第二章 数控机床的分类2.1 按加工方式分类52.2按控制运动轨迹分类52.3按驱动装置的特点分类6第三章 数控机床的基本结构3.1输入装置83.2数控装置83.3驱动装置和位置检测装置83.4辅助控制装置9第四章 G00的使用及加工精度的保证4.1 程序首句GOO的使用104.2控制尺寸精度的技巧11第五章 典型零件的加工5.1编程方法135.2编程步骤135.3典型实例分析13结论致谢参考文献第一章 数控机床组成数控机床由:程序、输人/输出装置、CNC单元、伺服系统、位置反馈系统、机床本体组成。1.1数控介质与输人、输出装置数控介质,又称程序载体。也称信息载体,时人与数控机床之间联系的中间媒介物质,反映了数控加工中的全部信息。常用的有:1) 穿孔纸带(过时、淘汰);2)盒式磁带(过时、淘汰);3)软盘、磁盘、U盘;4) 通信。输人、输出装置输入,输出装置时CNC系统与外部设备进行互换的装置。交互的信息通常是零件加工程序。即将编制好的记录在控制介质上的零件加工程序输入CNC系统或将调试好了的零件加工程序通过输出设备存放或记录在相应的控制介质上。1)对于软磁盘,配用软盘驱动器和驱动卡;2)现代数控机床,还可以通过手动方式(MDI方式);3)DNC网络通讯、RS232串口通讯。1.2 数控装置与伺服系统CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。其它的还有主运动部件的变速、换向和启停信号;选择和交换刀具的刀具指令信号,冷却、润滑的启停、工件和机床部件松开、夹紧、分度台转位等辅助指令信号等。准备功能:G00,G01,G02,G03,辅助功能:M03,M04刀具、进给速度、主轴:T,F,S伺服系统它是数控系统与机床本体之间的电传动联系环,主要由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。对于步进电机来说,每一个脉冲信号使机转过一个角度,进而带动机床移动部件移动一个微小距离。每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。如三轴联动的机床就有三套驱动系统。1.3 检测反馈系统测量反馈系统由检测元件和相应的电路组成,其作用是检测机床的实际位置,速度等信息,并将其反馈给数控装置于指令信息进行比较和校正,构成系统的闭环控制。1.4机床本体机床本体指的是数控机床机械机构实体,包括床身、主轴、进给机构等机械部件。由于数控机床是高精度和高生产的自动化机床,它与传统的普通机床相比,应具有更好的刚性和抗振性,相对运动摩擦系数要小,传动部件之间的间隙要小,而且传动和变速系统要便于实现自动化控制。第二章 数控机床的分类2.1、按加工方式分类金属切削类数控机床与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。(1)特种加工类数控机床除了切削加工数控机床以外,数控技术也大量用于数控电火花线切割机床、数控电火花成型机床、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。(2)板材加工类数控机床常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。近年来,其它机械设备中也大量采用了数控技术,如数控多坐标测量机、自动绘图机及工业机器人等。2.2 按控制运动轨迹分类2.2.1 点位控制数控机床位置的精确定位,在移动和定位过程中不进行任何加工。机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。这类数控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位数控装置。2.2.2 直线控制数控机床直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。直线控制的简易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算是一种直线控制数控机床。数控镗铣床、加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加工的功能,这类机床应该称为点位/直线控制的数控机床。2.2.3 轮廓控制数控机床轮廓控制数控机床能够对两个或两个以上运动的位移及速度进行连续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅能控制机床移动部件的起点与终点坐标,而且能控制整个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。现在计算机数控装置的控制功能均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。2.3 按驱动装置的特点分类2.3.1 开环控制数控机床这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。开环控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。2.3.2 闭环控制数控机床接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。2.3.3 半闭环控制数控机床半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。第三章 数控机床的基本结构3.1 输入装置输入装置的作用是将程序载体(信息载体)上的数控代码传递并存入数控系统内。根据控制存储介质的不同,输入装置可以是光电阅读机、磁带机或软盘驱动器等。数控机床加工程序也可通过键盘用手工方式直接输入数控系统;数控加工程序还可由编程计算机用RS232C或采用网络通信方式传送到数控系统中。零件加工程序输入过程有两种不同的方式:一种是边读入边加工(数控系统内存较小时),另一种是一次将零件加工程序全部读入数控装置内部的存储器,加工时再从內部存储器中逐段逐段调出进行加工。3.2 数控装置数控装置是数控机床的核心。数控装置从内部存储器中取出或接受输入装置送来的一段或几段数控加工程序,经过数控装置的逻辑电路或系统软件进行编译、运算和逻辑处理后,输出各种控制信息和指令,控制机床各部分的工作,使其进行规定的有序运动和动作。零件的轮廓图形往往由直线、圆弧或其他非圆弧曲线组成,刀具在加工过程中必须按零件形状和尺寸的要求进行运动,即按图形轨迹移动。但输入的零件加工程序只能是各线段轨迹的起点和终点坐标值等数据,不能满足要求,因此要进行轨迹插补,也就是在线段的起点和终点坐标值之间进行“数据点的密化”,求出一系列中间点的坐标值,并向相应坐标输出脉冲信号,控制各坐标轴(即进给运动的各执行元件)的进给速度、进给方向和进给位移量等。3.3 驱动装置和位置检测装置驱动装置接受来自数控装置的指令信息,经功率放大后,严格按照指令信息的要求驱动机床移动部件,以加工出符合图样要求的零件。因此,它的伺服精度和动态响应性能是影响数控机床加工精度、表面质量和生产率的重要因素之一。驱动装置包括控制器(含功率放大器)和执行机构两大部分。目前大都采用直流或交流伺服电动机作为执行机构。位置检测装置将数控机床各坐标轴的实际位移量检测出来,经反馈系统输入到机床的数控装置之后,数控装置将反馈回来的实际位移量值与设定值进行比较,控制驱动装置按照指令设定值运动。3.4 辅助控制装置辅助控制装置的主要作用是接收数控装置输出的开关量指令信号,经过编译、逻辑判别和运动,再经功率放大后驱动相应的电器,带动机床的机械、液压、气动等辅助装置完成指令规定的开关量动作。这些控制包括主轴运动部件的变速、换向和启停指令,刀具的选择和交换指令,冷却、润滑装置的启动停止,工件和机床部件的松开、夹紧,分度工作台转位分度等开关辅助动作。由于可编程逻辑控制器(PLC)具有响应快,性能可靠,易于使用、编程和修改程序并可直接启动机床开关等特点,现已广泛用作数控机床的辅助控制装置。数控机床的机床本体与传统机床相似,由主轴传动装置、进给传动装置、床身、工作外观造型、传动系统、刀具系统的结第四章 G00的使用及加工精度的保证数控车削加工技术已广泛应用于机械制造行业,如何高效、合理、按质按量完成工件的加工,每个从事该行业的工程技术人员或多或少都有自己的经验。笔者从事数控教学、培训及加工工作多年,积累了一定的经验与技巧,现以广州数控设备厂生产的GSK980T系列机床为例,介绍几例数控车削加工技巧。41 程序首句GOO的使用 目前我们所接触到的教科书及数控车削方面的技术书籍,程序首句均为建立工件坐标系,即以G50 X Z作为程序首句。根据该指令,可设定一个坐标系,使刀具的某一点在此坐标系中的坐标值为(X Z)(本文工件坐标系原点均设定在工件右端面)。采用这种方法编写程序,对刀后,必须将刀移动到G50设定的既定位置方能进行加工,找准该位置的过程如下。. 对刀后,装夹好工件毛坯;. 主轴正转,手轮基准刀平工件右端面A;. Z轴不动,沿X轴释放刀具至C点,输入G50 Z0,电脑记忆该点;. 程序录入方式,输入G01 W-8 F50,将工件车削出一台阶;d. X轴不动,沿Z轴释放刀具至C点,停车测量车削出的工件台阶直径,输入G50 X,电脑记忆该点;e. 程序录入方式下,输入G00 X Z,刀具运行至编程指定的程序原点,再输入G50 X Z,电脑记忆该程序原点。上述步骤中,步骤6即刀具定位在XZ处至关重要,否则,工件坐标系就会被修改,无法正常加工工件。有过加工经验的人都知道,上述将刀具定位到XZ处的过程繁琐,一旦出现意外,X或Z轴无伺服,跟踪出错,断电等情况发生,系统只能重启,重启后系统失去对G50设定的工件坐标值的记忆,“复位、回零运行”不再起作用,需重新将刀具运行至XZ位置并重设G50。如果是批量生产,加工完一件后,回G50起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系。鉴于上述程序首句使用G50建立工件坐标系的种种弊端,笔者想办法将工件坐标系固定在机床上,将程序首句G50 XZ改为G00 X Z后,问题迎刃而解。其操作过程只需采用上述找G50过程的前五步,即完成步骤1、2、3、4、5后,将刀具运行至安全位置,调出程序,按自动运行即可。即使发生断电等意外情况,重启系统后,在编辑方式下将光标移至能安全加工又不影响工件加工进程的程序段,按自动运行方式继续加工即可。上述程序首句用 G00代替G50的实质是将工件坐标系固定在机床上,不再囿于G50 X Z程序原点的限制,不改变工件坐标系,操作简单,可靠性强,收到了意想不到的效果。中国金属加工在线4.2 控制尺寸精度的技巧4.2.1 修改刀补值保证尺寸精度 由于第一次对刀误差或者其他原因造成工件误差超出工件公差,不能满足加工要求时,可通过修改刀补使工件达到要求尺寸,保证径向尺寸方法如下:a. 绝对坐标输入法 根据“大减小,小加大”的原则,在刀补001004处修改。如用2号切断刀切槽时工件尺寸大了0.1mm,而002处刀补显示是X3.8,则可输入X3.7,减少2号刀补。b. 相对坐标法 如上例,002刀补处输入U-0.1,亦可收到同样的效果。 同理,对于轴向尺寸的控制亦如此类推。如用1号外圆刀加工某处轴段,尺寸长了0.1mm,可在001刀补处输入W0.1。4.2.2 半精加工消除丝杆间隙影响保证尺寸精度 对于大部分数控车床来说,使用较长时间后,由于丝杆间隙的影响,加工出的工件尺寸经常出现不稳定的现象。这时,我们可在粗加工之后,进行一次半精加工消除丝杆间隙的影响。如用1号刀G71粗加工外圆之后,可在001刀补处输入U0.3,调用G70精车一次,停车测量后,再在001刀补处输入U-0.3,再次调用G70精车一次。经过此番半精车,消除了丝杆间隙的影响,保证了尺寸精度的稳定。4.2.3 程序编制保证尺寸精度a. 绝对编程保证尺寸精度 编程有绝对编程和相对编程。相对编程是指在加工轮廓曲线上,各线段的终点位置以该线段起点为坐标原点而确定的坐标系。也就是说,相对编程的坐标原点经常在变换,连续位移时必然产生累积误差,绝对编程是在加工的全过程中,均有相对统一的基准点,即坐标原点,故累积误差较相对编程小。数控车削工件时,工件径向尺寸的精度一般比轴向尺寸精度高,故在编写程序时,径向尺寸最好采用绝对编程,考虑到加工及编写程序的方便,轴向尺寸常采用相对编程,但对于重要的轴向尺寸,最好采用绝对编程。b. 数值换算保证尺寸精度 很多情况下,图样上的尺寸基准与编程所需的尺寸基准不一致,故应先将图样上的基准尺寸换算为编程坐标系中的尺寸。如图2b中,除尺寸13.06mm外,其余均属直接按图2a标注尺寸经换算后而得到的编程尺寸。其中, 29.95mm、16mm及60.07mm三个尺寸为分别取两极限尺寸平均值后得到的编程尺寸。4.2.4 修改程序和刀补控制尺寸 数控加工中,我们经常碰到这样一种现象:程序自动运行后,停车测量,发现工件尺寸达不到要求,尺寸变化无规律。如用1号外圆刀加工图3所示工件,经粗加工和半精加工后停车测量,各轴段径向尺寸如下:30.06mm、23.03mm及16.02mm。对此,笔者采用修改程序和刀补的方法进行补救,方法如下:a. 修改程序 原程序中的X30不变,X23改为X23.03,X16改为X16.04,这样一来,各轴段均有超出名义尺寸的统一公差0.06mm;b. 改刀补 在1号刀刀补001处输入U-0.06。 经过上述程序和刀补双管齐下的修改后,再调用精车程序,工件尺寸一般都能得到有效的保证。 数控车削加工是基于数控程序的自动化加工方式,实际加工中,操作者只有具备较强的程序指令运用能力和丰富的实践技能,方能编制出高质量的加工程序,加工出高质量的工件。第五章 典型零件的加工5.1 编程方法 数控编程方法有手工编程和自动编程两种。手工编程是指从零件图样分析工艺处理、数据计算、编写程序单、输入程序到程序校验等各步骤主要有人工完成的编程过程。它适用于点位加工或几何形状不太复杂的零件的加工,以及计算较简单,程序段不多,编程易于实现的场合等。但对于几何形状复杂的零件(尤其是空间曲面组成的零件),以及几何元素不复杂但需编制程序量很大的零件,由于编程时计算数值的工作相当繁琐,工作量大,容易出错,程序校验也较困难,用手工编程难以完成,因此要采用自动编程。所谓自动编程即程序编制工作的大部分或全部有计算机完成,可以有效解决复杂零件的加工问题,也是数控编程未来的发展趋势。同时,也要看到手工编程是自动编程的基础,自动编程中许多核心经验都来源于手工编程,二者相辅相成。 5.2 编程步骤 拿到一张零件图纸后,首先应对零件图纸分析,确定加工工艺过程,也即确定零件的加工方法(如采用的工装夹定位方法等),加工路线(如进给路线、对刀点、换刀点等)及工艺参数(如进给速度、主轴转速、切削速度和切削深度等)。其次应进行数值计算。绝大部分数控系统都带有刀补功能,只需计算轮廓相邻几何元素的交点(或切点)的坐标值,得出各几何元素的起点终点和圆弧的圆心坐标值即可。最后,根据计算出的刀具运动轨迹坐标值和已确定的加工参数及辅助动作,结合数控系统规定使用的坐标指令代码和程序段格式,逐段编写零件加工程序单,并输入CNC装置的存储器中。 5.3 典型实例分析 图1 典型轴类零件图1 零件图5.3.1 零件图工艺分析该零件表面由圆柱、顺圆弧、逆圆弧及螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;球面SR12的尺寸公差还兼有控制该球面形状(线轮廓)误差的作用。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。通过上述分析,可采用以下几点工艺措施。对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。在轮廓曲线上,有两处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出。毛坯选45棒料。5.3.2 选择设备 根据被加工零件的外形和材料等条件,选用TND036系统数控车床。(1)确定零件的定位基准和装夹方式 定位基准 确定坯料轴线和左端大端面(设计基准)为定位基准。装夹方法采用三爪自定心卡盘定心夹紧。(2)确定加工顺序及进给路线加工顺序按由粗到精、由近到远(由左到右)的原则确定。即先从左到右进行粗车(留0.20精车余量),然后从右到左进行精车,最后切槽,车螺纹。TND036系统数控车床具有粗车循环和螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环不需要人为确。该零件从右到左沿零件表面轮廓精车进给。精车轮廓进给路线5.3.3 加工(1)刀具选择 a.粗车及平端面选用900硬质合金右偏刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选=350。b.精车选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取r=0.150.2。将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。表1 数控加工刀具卡片 产品名称或代号零件名称典型轴零件图号序号刀具号刀具规格名称数量加工表面备注1T01硬质合金900外圆车刀1车端面及粗车轮廓右偏刀2T02硬质合金900外圆车刀1精车轮廓右偏刀3T03硬质合金3mm切断刀1切槽4T04硬质合金600螺纹车刀1车螺纹编制审核批准共 页第 页(2)切削用量选择 背吃刀量的选择 轮廓粗车循环时选ap=3 ,精车ap=0.25;螺纹粗车时选ap= 0.4 ,逐刀减少,精车ap=0.1。主轴转速的选择 车直线和圆弧时,选粗车切削速度vc=90m/min、精车切削速度vc=120m/min,然后利用公式vc=dn/1000计算主轴转速n(粗车直径D=42 ,精车工件直径取平均值):粗车500r/min、精车1200 r/min。切槽时,主轴转速n =300 r/min.进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为0.4/r,精车每转进给量为0.15/r,最后根据公式vf = nf计算粗车、精车进给速度分别为200 /min和180 /min。综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。表2 典型轴类零件数控加工工艺卡片 单位名称产品名称或代号零件名称零件图号典型轴工序号程序编号夹具名称使用设备车间001三爪卡盘和活动顶尖TND036数控车床工步号工步内容刀具号刀具规格/ mm主轴转速/r.m1进给速度/mm.m1背吃刀量/ mm备注1平端面T012525500手动2粗车轮廓T012525500200(3)程序编制,零件的加工程序如下:主程序 JXCP1.MPFN05 G90 G95 G00 X80 Z100 (换刀点)N10 T1D1 M03 S500 M08 (外圆粗车刀) -CNAME=“L01”R105=1 R106=0.25 R108=1.5 (设置坯料切削循环参数)R109=7 R110=2 R111=0.3 R112=0.08N15 LCYC95 (调用坯料切削循环粗加工)N20 G00 X80 Z100 M05 M09N25 M00N30 T2D1 M03 S800 M08 (外圆精车刀)N35 R105=5 (设置坯料切削循环参数)N40 LCYC95 (调用坯料切削循环精加工)N45 G00 X80 Z100 M05 M09N50 M00N55 T3D1 M03 S300 M08 (切槽车刀,刀宽4mm)N60 G00 X37 Z-23N65 G01 X26 F0.1N70 G01 X37N75 G01 Z-22N80 G01 X25.8N85 G01 Z-23N90 G01 X37N95 G00 X80 Z100 M05 M09N100 M00N105 T4D1 M03 S300 M08 (三角形螺纹车刀)R100=29.8 R101=-3 R102=29.8 (设置螺纹切削循环参数) R103=-18 R104=2 R105=1 R106=0.1 R109=4 R110=2 R111=1.24 R112=0 R113=5 R114=1N110 LCYC97 (调用螺纹切削循环)N115 G00X80 Z100 M05 M09N120 M00N125 T3D1 M03 S300 M08 (切断车刀,刀宽4mm)N130 G00 X45 Z-60N135 G01 X0 F0.1N140 G00 X80 Z100 M05 M09N145 M02子程序L01.SPFN05 G01X0 Z12N10 G03 X24 Z0 CR=12N15 G01 Z-3N20 G01 X25.8N25 G01 X29.8 Z5N30 G01 Z23N35 G01 X33N40 G01 X35 Z24N45 G01 Z33N50 G02 X36.725 Z37.838 CR=14N55 G01 X42 Z45N60 G01 Z60N65 G01 X45N70 M170 结 论 随着数控机床在生产实际中的广泛应用,数控编程已经成为数控加工中的关键问题之一。在数控加工程序的编制过程中,要在人机交互状态下合理的确定切削用量。因此,编程人员必须熟悉数控加工中切削用量的确定原则,结合现场的生产状况,选择出合理的切削用量,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平。 制定符合中国国情的总体发展战略,确立与国际接轨的发展道路,对本世纪我国数控技术与产业的发展至关重要。对我国数控领域存在的问题进行研究的基础上,对本世纪我国数控技术和产业的发展途径进行了探讨,提出了以科技创新为先导,以商品化为主干,以管理和营销为重点,以技术支持和服务为后盾,坚持可持续发展道路的总体发展战略。在此基础上,研究了发展新型数控系统、数控功能部件、数控机床整机等的具体技术途径。 我们衷心希望,我国科技界、产业界和教育界通力合作,把握好知识经济给我们带来的难得机遇,迎接竞争全球化带来的严峻挑战,为在21世纪使我国数控技术和产业走向世界的前列,使我国经济继续保持强劲的发展势头而共同努力奋斗!致 谢首先感谢我院对我的栽培,让在这里我学到了扎实而过硬的技术,同时也让我学会了为人处世地方法,再次感谢我的指导老师。从最初的定题,到资料收集,到写作、修改,到论文定稿,她们给了我耐心的指导和无私的帮助。为了指导我们的毕业论文,她们放弃了自己的休息时间,她们的这种无私奉献的敬业精神令人钦佩,在此我向她们表示我诚挚的谢意。你们严谨细致、一丝不苟的作风一直是我工作、学习的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪。同时,感谢所有任课老师和所有同学在这四年来给自己的指导和帮助,是他们教会了我专业知识,教会了我如何学习,教会了我如何做人。正是由于他们,我才能在各方面取得显著的进步,在此向他们表示我由衷的谢意,并祝所有的老师培养出越来越多的优秀人才,桃李满天下!。同时我还要感谢在我学习期间给我极大关心和支持的各位老师以及关心我的同学和朋友。感谢寝室里的患难兄弟,是你们3年来对我的帮助,才使我的意志品质变的如此坚强!,写作毕业论文是一次再系统学习的过程,毕业论文的完成,同样也意味着新的学习生活的开始。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚的谢意!参考文献1 马东坡. 数控加工技术综合技能训练指导书 M.北京:学苑出版社,2005.2 张继世. 机械工程材料基础 M.北京:高等教育出版社,2000.3 张亮峰. 机械加工工艺基础与实习 M.北京:高等教育出版社,19994 徐茂功,桂定一. 公差配合与技术测量 M.北京:机械工业出版社,20005 韩荣第,周明,孙玉洁. 金属切削原理与刀具 M.哈尔滨:哈尔滨工业大学出版社,20016 肖继德,陈宁平. 机床夹具设计 M.北京:机械工业出版社,20007 吴国华. 金属切削机床 M.北京:机械工业出版社,20018 郑修本. 机械制造工艺学 M.北京:机械工业出版社,19999 韩鸿鸾. 数控编程 M.北京:中国劳动社会保障出版社,2004付:外文翻译 电火花加工 电火花加工法对加工超韧性的导电材料(如新的太空合金)特别有价值。这些金属很难用常规方法加工,用常规的切削刀具不可能加工极其复杂的形状,电火花加工使之变得相对简单了。在金属切削工业中,这种加工方法正不断寻找新的应用领域。塑料工业已广泛使用这种方法,如在钢制模具上加工几乎是任何形状的模腔。 电火花加工法是一种受控制的金属切削技术,它使用电火花切除(侵蚀)工件上的多余金属,工件在切削后的形状与刀具(电极)相反。切削刀具用导电材料(通常是碳)制造。电极形状与所需型腔想匹配。工件与电极都浸在不导电的液体里,这种液体通常是轻润滑油。它应当是点的不良导体或绝缘体。 用伺服机构是电极和工件间的保持0.00050.001英寸(0.010.02mm)的间隙,以阻止他们相互接触。频率为20000Hz左右的低电压大电流的直流电加到电极上,这些电脉冲引起火花,跳过电极与工件的见的不导电的液体间隙。在火花冲击的局部区域,产生了大量的热量,金属融化了,从工件表面喷出融化金属的小粒子。不断循环着的不导电的液体,将侵蚀下来的金属粒子带走,同时也有助于驱散火花产生的热量。 在最近几年,电火花加工的主要进步是降低了它加工后的表面粗糙度。用低的金属切除率时,表面粗糙度可达24vin.(0.050.10vin)。用高的金属切除率如高达15in3/h(245.8cm3/h)时,表面粗糙度为1000vin.(25vm)。 需要的表面粗糙度的类型,决定了能使用的安培数,电容,频率和电压值。快速切除金属(粗切削)时,用大电流,低频率,高电容和最小的间隙电压。缓慢切除金属(精切削)和需获得高的表面光洁度时,用小电流,高频率,低电容和最高的间隙电压。 与常规机加工方法相比,电火花加工有许多优点。 1 . 不论硬度高低,只要是导电材料都能对其进行切削。对用常规方法极难切削的硬质合金和超韧性的太空合金,电火化加工特别有价值。 2 . 工件可在淬火状态下加工,因克服了由淬火引起的变形问题。 3 . 很容易将断在工件中的丝锥和钻头除。 4 . 由于刀具(电极)从未与工件接触过,故工件中不会产生应力。 5 . 加工出的零件无毛刺。 6 . 薄而脆的工件很容易加工,且无毛刺。 7 . 对许多类型的工件,一般不需第二次精加工。 8 .随着金属的切除,伺服机构使电极自动向工件进给。 9 .一个人可同时操作几台电火花加工机床。 10.能相对容易地从实心坯料上,加工出常规方法不可能加工出来的极复杂的形状。 11.能用较低价格加工出较好的模具。12.可用冲头作电极,在阴模板上复制其形状,并留有必须的间隙。Electrical discharge machiningElectrical discharge machining has proved especially valuable in the machining of super-tough, electrically conductive materials such as the new space-age alloys. These metals would have been difficult to machine by conventional methods, but EDM has made it relatively simple to machine intricate shapes that would be impossible to produce with conventional cutting tools. This machining process is continually finding further applications in the metal-cutting industry. It is being used extensively in the plastic industry to produce cavities of almost any shape in the steel molds. Electrical discharge machining is a controlled metal removal technique whereby an electric spark is used to cut (erode) the workpiece, which takes a shape opposite to that of the cutting tool or electrode. The cutting tool (electrode) is made from electrically conductive material, usually carbon. The electrode, made to the shape of the cavity required, and the workpiece are both submerged in a dielectric fluid, which is generally a light lubricating oil. This dielectric fluid should be a nonconductor (or poor conductor) of electricity. A servo mechanism maintains a gap of about 0.0005 to 0.001 in. (0.01 to 0.02 mm) between the electrode and the work, preventing them from coming into contact with each other. A direct current of low voltage and high amperage is delivered to the electrode at the rate of approximately 20 000 hertz (Hz). These electrical energy impulses become sparks which jump the dielectric fluid. Intense heat is created in the localized area of the park impact, the metal melts and a small particle of molten metal is expelled from the surface of the workpiece . The dielectric fluid, which is constantly being circulated, carries away the eroded particles of metal and also assists in dissipating the heat caused by the spark.In the last few years, major advances have been made with regard to the surface finishes that can be produced. With the low metal removal rates, surface finishes of 2 to 4 um. (0.05 to 0.10um) are possible. With high metal removal rates finishes of 1 000uin. (25um) are produced.The type of finish required determines the number of amperes which can be used, the capacitance, frequency, and the voltage setting. For fast metal removal (roughing cuts), high amperage, low frequency, high capacitance, and minimum gap voltage are required. For slow metal removal (finish cut) and good surface finish, low amperage, high frequency, low capacitance, and the highest gap voltage are required.Electrical discharge machining has many advantages over conventional machining processes.1. Any material that is electrically conductive can be cut, regardless of its hardness. It is especially valuable for cemented carbides and the new supertough space-age alloys that are extremely difficult to cut by conventional means.2. Work can be machined in a hardened state, thereby overcoming the deformation caused by the hardening process.3. Broken taps or drills can readily be removed from workpieces. 4. It does not create stresses in the work material since the tool (electrode) never comes in contact with the work.5. The process is burr-free.6. Thin, fragile sections can be easily machined without deforming.7. Secondary finishing operations are generally eliminated for many types of work.8. The process is automatic in that the servomechanism advances the electrode into the work as the metal is removed.9. One person can operate several EDM machines at one time.10. Intricate shapes, impossible to produce by conventional means, are cut out of a solid with relative ease.11. Better dies and molds can be produced at lower costs.12. A die punch can be used as the electrode to reproduce its shape in the matching die plate, complete with the necessary clearance.
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 办公文档


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!