(含问题详解)《全参数方程》练习题

上传人:沈*** 文档编号:86853015 上传时间:2022-05-08 格式:DOC 页数:10 大小:1.17MB
返回 下载 相关 举报
(含问题详解)《全参数方程》练习题_第1页
第1页 / 共10页
(含问题详解)《全参数方程》练习题_第2页
第2页 / 共10页
(含问题详解)《全参数方程》练习题_第3页
第3页 / 共10页
点击查看更多>>
资源描述
word参数方程练习题一、 选择题:1直线的参数方程为,上的点对应的参数是,则点与之间的距离是( C )A B C D2参数方程为表示的曲线是( D )A一条直线 B两条直线 C一条射线 D两条射线3直线和圆交于两点,则的中点坐标为( D )A B C D4把方程化为以参数的参数方程是( D )A B C D5若点在以点为焦点的抛物线上,则等于( C )A B C D6.直线 (t为参数)的倾斜角是 ( )0000二、填空题:7曲线的参数方程是,则它的普通方程为_8点是椭圆上的一个动点,则的最大值为_。9已知曲线上的两点对应的参数分别为,那么=_10直线与圆相切,则_或_。(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_.三、解答题:12已知点是圆上的动点,(1)求的取值围;(2)若恒成立,数的取值围。解:(1)设圆的参数方程为, (2)13.分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,为常数;1解:(1)当时,即; 当时, 而,即(2)当时,即;当时,即;当时,得,即得即。14已知直线经过点,倾斜角,(1)写出直线的参数方程。(2)设与圆相交与两点,求点到两点的距离之积。解:(1)直线的参数方程为,即 (2)把直线代入得,则点到两点的距离之积为作倾斜角为的直线与曲线交于点,求的最大值及相应的的值。解:设直线为,代入曲线并整理得,则所以当时,即,的最大值为,此时。16.在直角坐标系中,以坐标原点为极点,xA的极坐标为,直线的极坐标方程为,且点A在直线上。()求的值及直线的直角坐标方程;()圆C的参数方程为,试判断直线l与圆C的位置关系.【解析】()由点在直线上,可得所以直线的方程可化为从而直线的直角坐标方程为()由已知得圆的直角坐标方程为所以圆心为,半径以为圆心到直线的距离,所以直线与圆相交17.在直角坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.解:()把极坐标下的点化为直角坐标得:又点的坐标满足直线方程,所以点在直线上。() 因为点在曲线上,故可设点的坐标为,从而点到直线的距离为,因此当时,去到最小值,且最小值为。18.在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。()求圆C的直角坐标方程;()设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。【解析】()由得即()将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|=。1(t为参数),C2(为参数),()当=时,求C1与C2的交点坐标;()过坐标原点O做C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线。(23)解: ()当时,的普通方程为,的普通方程为。联立方程组 ,解得与的交点为(1,0)。()的普通方程为。A点坐标为,故当变化时,P点轨迹的参数方程为:,P点轨迹的普通方程为。故P点轨迹是圆心为,半径为的圆。的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为(1)求点的直角坐标;(2)设为上任意一点,求的取值围。【解析】(1)点的极坐标为 点的直角坐标为 (2)设;则中,以为极点,轴正半轴为极轴建立极坐标系。圆,直线的极坐标方程分别为求与的交点的极坐标;设为的圆心,为与的交点连线的中点,已知直线的参数方程为求的值。【解析】由得,圆的直角坐标方程为,直线的直角坐标方程分别为由解得所以圆,直线的交点直角坐标为再由,将交点的直角坐标化为极坐标所以与的交点的极坐标由知,点,的直角坐标为故直线的直角坐标方程为由于直线的参数方程为消去参数对照可得解得22. 已知曲线C1的参数方程为 (为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)。【解析】将消去参数,化为普通方程,即:.将代入得.()的普通方程为.由,解得或.所以与交点的极坐标分别为,23.已知动点P,Q都在曲线C: 上,对应参数分别为t=与=2(02),M为PQ的中点.(1)求M的轨迹的参数方程.(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.【解析】(1)依题意有因此. M的轨迹的参数方程为(2)M点到坐标原点的距离.当时,故M的轨迹过坐标原点.:(为参数),是上的动点,点满足,点的轨迹为曲线()求的方程()在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.【解析】(I)设,则由条件知.由于点在上,所以 即 从而的参数方程为(为参数)()曲线的极坐标方程为,曲线的极坐标方程为.射线与的交点的极径为,射线与的交点的极径为.所以.25.在平面直角坐标系中,曲线的参数方程为,曲线的参数方程为为参数)。在以为极点,轴的正半轴为极轴的极坐标系中,射线:与,各有一个交点。当时,这两个交点间的距离为2,当时,这两个交点重合。(1)分别说明,是什么曲线,并求出与的值; (2)设当时,与,的交点分别为,当时,与,的交点为,求四边形的面积。解:(1)是圆,是椭圆。当,射线与,的交点的直角坐标分别是,这两个交点间的距离为2,当时,射线与,的交点的直角坐标分别是,(2) ,的普通方程分别是,当时,射线与,的交点的横坐标分别是,当时,射线与,的两个交点分别与关于轴对称,所以四边形是梯形,故26.已知直线,为参数,为的倾斜角,且与曲线 为参数相交于A、B两点,点的坐标为 (1)求的周长; (2)若点恰为线段的三等分点,求的面积。 解:(1)将曲线C消去可得:,直线过曲线C的左焦点, 由椭圆的定义可知为 (2)可设直线的方程为,若点为线段的三等分点,不妨设,则 联立,消去得: 则,消去得: 此时 所以10 / 10
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!