初中数学重要知识点总结材料

上传人:仙*** 文档编号:86580815 上传时间:2022-05-08 格式:DOC 页数:19 大小:146KB
返回 下载 相关 举报
初中数学重要知识点总结材料_第1页
第1页 / 共19页
初中数学重要知识点总结材料_第2页
第2页 / 共19页
初中数学重要知识点总结材料_第3页
第3页 / 共19页
点击查看更多>>
资源描述
word线1、根本概念图形直线射线线段端点个数无一个两个表示法直线a;直线ABBA射线AB 线段a;线段ABBA作法表示作直线AB; 作直线a作射线AB作线段a; 作线段AB; 连接AB延长表示 不能延长 反向延长射线AB延长线段AB; 反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线。 简单地:两点确定一条直线。 3、画一条线段等于线段 1度量法 2用尺规作图法 4、线段的大小比拟方法 1度量法 2叠合法5、线段的中点二等分点、三等分点、四等分点等 定义:把一条线段平均分成两条相等线段的点。 图形: AMB符号:假设点M是线段AB的中点,如此AM=BM=AB,AB=2AM=2BM。 6、线段的性质 两点的所有连线中,线段最短。简单地:两点之间,线段最短。 7、两点的距离 连接两点的线段长度叫做两点的距离。8、点与直线的位置关系1点在直线上 2点在直线外. 1 过两点有且只有一条直线 2 两点之间线段最短 3 过一点有且只有一条直线和直线垂直 4 直线外一点与直线上各点连接的所有线段中,垂线段最短 5 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 6 如果两条直线都和第三条直线平行,这两条直线也互相平行 7 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 8 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 9 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 等边三角形1 推论 等边三角形的各角都相等,并且每一个角都等于60 2 推论 三个角都相等的三角形是等边三角形 3 推论 有一个角等于60的等腰三角形是等边三角形 等腰三角形1 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角 2 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 3 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 4 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边 角1、 角:由公共端点的两条射线所组成的图形叫做角。2、角的表示法四种: 用三个字母与角的符号“表示。中间的字母表示顶点,其他两个字母分别表示角的两边上的店;当顶点处只有一个角时,可用表示顶点的这个字母来表示该角;用一个数字表示一个角;用一个希腊字母表示一个角。3、角的分类 锐角 直角 钝角平角 周角 围090=90900时y随x的增大而增大直线y=kx经过一、三象限从左到右直线上升。 当k0时y随x的增大而增大直线y=kx+b(k0)是上升的 (3) 当k0, b0直线经过一、二、三象限 2k0, b0直线经过一、三、四象限 3k0直线经过一、二、四象限 4k0, b0如此kx+b0。假设y0,如此kx+b0 (4)一元一次不等式,y1kx+by2( y1,y2都是数,且y10时,图象的两个分支分别在一、三象限,在每个象限, y随x的增大而减小; 当ka不等式组的解集是xxb不等式组的解集是空集baba9几个重要的判断:,整式的乘除 1. 同底数幂的乘法:aman=am+n ,底数不变,指数相加。2幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。3单项式的乘法:系数相乘,一样字母相乘,只在一个因式中含有的字母,连同指数写在积里。4单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加。5多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。6乘法公式:1平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差; 2完全平方公式: (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略。 7. 配方:1假设二次三项式x2+px+q是完全平方式,如此有关系式:; 2二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k 可以判断ax2+bx+c值的符号; 当x=h时,可求出ax2+bx+c的最大或最小值k。(3) 注意:8 同底数幂的除法:aman=am-n ,底数不变,指数相减。9零指数与负指数公式: 1a0=1 (a0); ,(a0). 注意:00,0-2无意义; 2有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.0110-5 . 10单项式除以单项式: 系数相除,一样字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式。11多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加。12多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式。13整式混合运算:先乘方,后乘除,最后加减,有括号先算括号。 线段、角、相交线与平行线 几何A级概念:要求深刻理解、熟练运用、主要用于几何证明 1. 角平分线的定义: 一条射线把一个角分成两个相等的局部,这条射线叫角的平分线.如图OCAB几何表达式举例: (1) OC平分AOB AOC=BOC (2) AOC=BOC OC是AOB的平分线2线段中点的定义: 点C把线段AB分成两条相ACB等的线段,点C叫线段中点.(如图)几何表达式举例: (1) C是AB中点 AC = BC (2) AC = BC C是AB中点ACBD3 等量公理:(如图) (1) 等量加等量和相等;OCADB(2) 等量减等量差相等;OCAB(3) 等量的等倍量相等;FMEG(4) 等量的等分量相等.EFGACB几何表达式举例:(1) AC=DB AC+CD=DB+CD 即AD=BC (2) AOC=DOB AOC-BOC=DOB-BOC 即AOB=DOC(3) BOC=GFM 又AOB=2BOC EFG=2GFMAOB=EFG(4) ,又AB=EF AC=EG 4等量代换: 几何表达式举例: a=c b=c a=b 几何表达式举例: a=c b=d 又c=d a=b 几何表达式举例: a=c+d b=c+d a=b 5补角重要性质: 同角或等角的补角相等.(如图)4231几何表达式举例:1+3=1802+4=180又3=4 1=26余角重要性质: 同角或等角的余角相等.(如图)2431几何表达式举例:1+3=902+4=90又3=4 1=27对顶角性质定理: 对顶角相等.(如图)COABD几何表达式举例:AOC=DOB 又AOC+AOD=180DOB+BOC=180AOD=BOC8两条直线垂直的定义: 两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)DBCOA几何表达式举例: (1) AB、CD互相垂直 COB=90(2) COB=90AB、CD互相垂直9三直线平行定理: 两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACDEFB几何表达式举例: ABEF 又CDEF ABCD10 平行线判定定理: FGBEAHDC两条直线被第三条直线所截: (1) 假设同位角相等,两条直线平行;(如图) (2) 假设错角相等,两条直线平行;(如图) 3假设同旁角互补,两条直线平行.(如图)几何表达式举例:(1) GEB=EFD ABCD (2) AEF=DFE ABCD (3) BEF+DFE=180 ABCD 11 平行线性质定理: 1两条平行线被第三条直线所截,同位角相等;(如图) (2) 两条平行线被第三条直线所截,错角相等;(如图)3两条平行线被第三条直线所截,同旁角互补.(如图)FGBEAHDC几何表达式举例: (1) ABCD GEB=EFD (2) ABCD AEF=DFE (3) ABCD BEF+DFE=180几何B级概念:要求理解、会讲、会用,主要用于填空和选择题 一 根本概念: 直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、错角、同旁角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明. 二 定理: 1. 直线公理:过两点有且只有一条直线. 2.线段公理:两点之间线段最短. 3.有关垂线的定理: 1过一点有且只有一条直线与直线垂直;2直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 三 公式: 直角=90,平角=180,周角=360,1=60,1=60. 四 常识: 1 定义有双向性,定理没有. 2直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长. 3命题可以写为“如果那么的形式,“如果是命题的条件,“那么 是命题的结论. 4几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5数射线、线段、角的个数时,应该按顺序数,或分类数. 6几何论证题可以运用“分析综合法、“方程分析法、“代入分析法、“图形观察法四种方法分析. 3060东偏北30南偏东60北西北西南东北东南南西东7方向角: 1 2 8比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,假设图上1厘米,表示实际距离m厘米. 9几何题的证明要用“论证法,论证要求规、严密、有依据;证明的依据是学过的定义、公理、定理和推论。有理数的根底知识 1、三个重要的定义:(1) 正数:像1、2.5、这样大于0的数叫做正数;(2) 负数:在正数前面加上“-号,表示比0小的数叫做负数;30即不是正数也不是负数. 2、 有理数的分类: 整数分数有理数正整数0负整数正分数负分数(1) 按定义分类:(2) 按性质符号分类:正有理数负有理数有理数正整数0负整数正分数负分数3、 数轴 数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0叫做原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数. 4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两上数,在数轴上位于原点的两如此,并且与原点的距离相等。5、 绝对值 (1) 绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。(2) 绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负|a|a0-a(a0)(a=0)(a0)数的绝对值是它的相反数,可用字母a表示如下: (3) 两个负数比拟大小,绝对值大的反而小。有理数的运算1、有理数的加法 1有理数的加法法如此:同号两数相加,取一样的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数. 2有理数加法的运算律: 加法的交换律 :a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c) 用加法的运算律进展简便运算的根本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号一样的数先相加;把相加得整数的数先相加. 2、有理数的减法 1有理数减法法如此:减去一个数等于加上这个数的相反数. 2有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数. 3有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法如此进展运算;3、有理数的乘法 (1) 有理数乘法的法如此:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。2有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac. (3) 倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。4、有理数的除法 有理数的除法法如此:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法如此可以把除法转化为乘法;除法法如此也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。5、有理数的乘法 1有理数的乘法的定义:求几个一样因数a的运算叫做乘方,乘方是一种运算,是几个一样的因数的特殊乘法运算,记做“an其中a叫做底数,表示一样的因数,n叫做指数,表示一样因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。2正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数。6、有理数的混合运算 1进展有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法如此、运算律与运算顺序。比拟复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。2进展有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进展简便运算,以提高运算速度与运算能力。方程1、方程的概念: 1含有未知数的等式叫方程。2在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。2、等式的根本性质:(1) 等式两边同时加上或减去同一个代数式,所得结果仍是等式。假设a=b,如此a+c=b+c或a c = b c。(2) 等式两边同时乘以或除以同一个数除数不能为0,所得结果仍是等式。假设a=b,如此ac=bc或a/c= b/c。3对称性:等式的左右两边交换位置,结果仍是等式.假设a=b,如此b=a。(4) 传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换。解方程1、移项的有关概念: 把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法如此是根据等式的性质1推出来的,是解方程的依据。要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。2、解一元一次方程的步骤: (1)去分母 等式的性质2 注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,假设分子是代数式,如此必加括号。(2)去括号 去括号法如此、乘法分配律 严格执行去括号的法如此,假设是数乘括号,切记不漏乘括号的项,减号后去括号,括号各项的符号一定要变号。(3)移项 等式的性质1越过“=的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面。(4) 合并同类项 合并同类项法如此 注意在合并时,仅将系数加到了一起,而字母与其指数均不改变。(5) 系数化为1 等式的性质2 两边同除以未知数的系数,记住未知数的系数永远是分母除数,切不可分子、分母颠倒。(6) 检验 列方程解应用题1、列方程解应用题的一般步骤:1将实际问题抽象成数学问题;2分析问题中的量和未知量,找出等量关系;3设未知数,列出方程;4解方程; 5检验并作答.2、一些实际问题中的规律和等量关系:(1) 日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字围是在1到31之间,不能超出这个围. 2几种常用的面积公式: 长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S = a2,a为边长,S为面积; 梯形面积公式:,a,b为上下底边长,h为梯形的高,S为梯形面积; 圆形的面积公式:,r为圆的半径,S为圆的面积; 三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。(3) 几种常用的周长公式: 长方形的周长:L=2a+b,a,b为长方形的长和宽,L为周长。正方形的周长:L=4a,a为正方形的边长,L为周长。圆:L=2r,r为半径,L为周长。(4) 柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积。5打折销售这类题型的等量关系是:利润=售价本钱。6行程问题中关建的等量关系:路程=速度时间,以与由此导出的其化关系。7在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出假设干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系。8在行程问题中,可将题目中的数字语言用“线段图表达出来,分析问题中的数量关系,从而找出等量关系,列出方程。9关于储蓄中的一些概念: 本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数利息与本金的比;利息=本金利率期数;本息=本金+利息1、几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等平面图形:三角形、四边形、圆等.多姿多彩的图形2、几何体的三视图主正视图-从正面看侧左、右视图-从左右边看俯视图-从上面看1会判断简单物体直棱柱、圆柱、圆锥、球的三视图. 2能根据三视图描述根本几何体或实物原型. 3、立体图形的平面展开图 1同一个立体图形按不同的方式展开,得到的平现图形不一样的. 2了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体 1几何图形的组成 点:线和线相交的地方是点,它是几何图形最根本的图形。 线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面. 体:几何体也简称体。 (2) 点动成线,线动成面,面动成体。19 / 19
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!